/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/operators/elementwise/elementwise_op.h" #include "paddle/fluid/operators/elementwise/elementwise_op_function.h" #include "paddle/fluid/operators/math/blas.h" namespace paddle { namespace operators { template struct MulFunctor { inline HOSTDEVICE T operator()(T a, T b) const { return a * b; } }; template void default_elementwise_mul(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, framework::Tensor* z) { int axis = ctx.Attr("axis"); ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, MulFunctor(), z); } template typename std::enable_if< std::is_floating_point::value && std::is_same::value>::type elementwise_mul(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, framework::Tensor* z) { auto blas = math::GetBlas(ctx); blas.VMUL(x->numel(), x->data(), y->data(), z->mutable_data(ctx.GetPlace())); } template typename std::enable_if< !std::is_floating_point::value || !std::is_same::value>::type elementwise_mul(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, framework::Tensor* z) { default_elementwise_mul(ctx, x, y, z); } template class ElementwiseMulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto x_var = ctx.InputVar("X"); PADDLE_ENFORCE(x_var != nullptr, "Cannot get input Variable X, variable name = %s", ctx.op().Input("X")); auto* y = ctx.Input("Y"); framework::Tensor x, *z; if (x_var->IsType()) { PADDLE_ENFORCE(y->dims().size() == 1 && y->dims()[0] == 1, "For elementwise_op, if X is Sparse, Y must be scalar."); auto& x_sele = x_var->Get(); auto out_sele = ctx.Output("Out"); x = x_sele.value(); out_sele->set_rows(x_sele.rows()); out_sele->set_height(x_sele.height()); out_sele->mutable_value()->Resize(x_sele.value().dims()); out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type()); z = ctx.Output("Out")->mutable_value(); } else if (x_var->IsType()) { x = x_var->Get(); z = ctx.Output("Out"); } else { PADDLE_THROW("X's type[%s] is not supported by elementwise_op.", framework::ToTypeName(x_var->Type())); } z->mutable_data(ctx.GetPlace()); if (x.numel() == y->numel()) { elementwise_mul(ctx, &x, y, z); } else { default_elementwise_mul(ctx, &x, y, z); } } }; template struct MulGradDX { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; } }; template struct MulGradDY { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; } }; template class ElementwiseMulGradKernel : public ElemwiseGradKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { ElemwiseGradKernel::Compute(ctx); using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* out = dout; // out is not necessary auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); int axis = ctx.Attr("axis"); ElemwiseGradCompute, MulGradDY>( ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX(), MulGradDY()); } }; template class ElementwiseMulDoubleGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input("DOut"); auto* ddx = ctx.Input("DDX"); auto* ddy = ctx.Input("DDY"); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); auto* ddout = ctx.Output("DDOut"); if (ddout) ddout->mutable_data(ctx.GetPlace()); // dx = dout * ddy // dy = dout * ddx Tensor ddx_safe, ddy_safe; GetDoubleGradSafeTensor(ctx, x, ddx, &ddx_safe); GetDoubleGradSafeTensor(ctx, y, ddy, &ddy_safe); int axis = ctx.Attr("axis"); ElemwiseGradCompute, MulGradDY>( ctx, ddx_safe, ddy_safe, *dout, *dout, axis, dx, dy, MulGradDX(), MulGradDY()); // ddout = ddx * y + x * ddy if (ddout) { if (ddx && ddy) { Tensor ddout_tmp; ddout_tmp.mutable_data(ddout->dims(), ctx.GetPlace()); default_elementwise_mul(ctx, ddx, y, ddout); default_elementwise_mul(ctx, x, ddy, &ddout_tmp); auto& place = *ctx.template device_context().eigen_device(); auto ddout_t = framework::EigenVector::Flatten(*ddout); auto ddout_tmp_t = framework::EigenVector::Flatten(ddout_tmp); ddout_t.device(place) = ddout_t + ddout_tmp_t; } else { if (ddx) default_elementwise_mul(ctx, ddx, y, ddout); if (ddy) default_elementwise_mul(ctx, x, ddy, ddout); } } } }; } // namespace operators } // namespace paddle