/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. Indicesou may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/op_registry.h" #include "paddle/operators/math/math_function.h" namespace paddle { namespace operators { template using EigenVector = framework::EigenVector; template using EigenMatrix = framework::EigenMatrix; template class NormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const framework::Tensor* in_x = context.Input("X"); const framework::Tensor* scale = context.Input("Scale"); auto* out = context.Output("Out"); T epsilon = context.Attr("epsilon"); out->mutable_data(context.GetPlace()); int batch_size = in_x->dims()[0]; int channels = in_x->dims()[1]; int height = in_x->dims()[2]; int width = in_x->dims()[3]; int fea_len = height * width; auto* place = context.template device_context().eigen_device(); auto x = EigenMatrix::From( *in_x, framework::make_ddim({batch_size, fea_len * channels})); // get square framework::Tensor x_square; x_square.mutable_data(in_x->dims(), context.GetPlace()); auto x_square_eigen = EigenMatrix::From( x_square, framework::make_ddim({batch_size, fea_len * channels})); x_square_eigen.device(*place) = x.square(); auto scale_eigen = EigenVector::Flatten(*scale); for (int n = 0; n < batch_size; ++n) { framework::Tensor in_x_batch = in_x->Slice(n, n + 1); auto in_x_batch_eigen = EigenMatrix::From( in_x_batch, framework::make_ddim({channels, fea_len})); framework::Tensor x_square_batch = x_square.Slice(n, n + 1); auto x_square_batch_eigen = EigenMatrix::From( x_square_batch, framework::make_ddim({channels, fea_len})); framework::Tensor out_batch = out->Slice(n, n + 1); auto out_batch_eigen = EigenMatrix::From( out_batch, framework::make_ddim({channels, fea_len})); framework::Tensor tmp_tensor; tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), context.GetPlace()); auto tmp = EigenVector::Flatten(tmp_tensor); // get colsum and sqrt , inverse auto dim = Eigen::array({{0}}); tmp.device(*place) = x_square_batch_eigen.sum(dim); tmp.device(*place) = (tmp + epsilon).sqrt().inverse(); Eigen::array broadcast_dim_col; broadcast_dim_col[1] = 1; broadcast_dim_col[0] = channels; out_batch_eigen.device(*place) = in_x_batch_eigen * (tmp.broadcast(broadcast_dim_col)); Eigen::array broadcast_dim_row; broadcast_dim_row[1] = fea_len; broadcast_dim_row[0] = 1; out_batch_eigen.device(*place) = out_batch_eigen * (scale_eigen.broadcast(broadcast_dim_row)); } } }; template class NormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const framework::Tensor* in_x = context.Input("X"); const framework::Tensor* scale = context.Input("Scale"); const framework::Tensor* out_grad = context.Input(framework::GradVarName("Out")); T epsilon = context.Attr("epsilon"); framework::Tensor* in_x_grad = context.Output(framework::GradVarName("X")); in_x_grad->mutable_data(context.GetPlace()); int batch_size = in_x->dims()[0]; int channels = in_x->dims()[1]; int height = in_x->dims()[2]; int width = in_x->dims()[3]; int fea_len = height * width; auto* place = context.template device_context().eigen_device(); auto scale_eigen = EigenVector::Flatten(*scale); auto x = EigenMatrix::From( *in_x, framework::make_ddim({batch_size, fea_len * channels})); // get square framework::Tensor x_square; x_square.mutable_data(in_x->dims(), context.GetPlace()); auto x_square_eigen = EigenMatrix::From( x_square, framework::make_ddim({batch_size, fea_len * channels})); x_square_eigen.device(*place) = x.square(); for (int n = 0; n < batch_size; ++n) { framework::Tensor in_x_batch = in_x->Slice(n, n + 1); auto in_x_batch_eigen = EigenMatrix::From( in_x_batch, framework::make_ddim({channels, fea_len})); framework::Tensor in_g_batch = in_x_grad->Slice(n, n + 1); auto in_g_batch_eigen = EigenMatrix::From( in_g_batch, framework::make_ddim({channels, fea_len})); framework::Tensor x_square_batch = x_square.Slice(n, n + 1); auto x_square_batch_eigen = EigenMatrix::From( x_square_batch, framework::make_ddim({channels, fea_len})); framework::Tensor outg_batch = out_grad->Slice(n, n + 1); auto outg_batch_eigen = EigenMatrix::From( outg_batch, framework::make_ddim({channels, fea_len})); framework::Tensor tmp_tensor; tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), context.GetPlace()); auto tmp_eigen = EigenVector::Flatten(tmp_tensor); auto dim = Eigen::array({{0}}); tmp_eigen.device(*place) = (in_x_batch_eigen * outg_batch_eigen).sum(dim); framework::Tensor norm_tmp_tensor; norm_tmp_tensor.mutable_data(framework::make_ddim({1, fea_len}), context.GetPlace()); auto norm_tmp_eigen = EigenVector::Flatten(norm_tmp_tensor); norm_tmp_eigen.device(*place) = (x_square_batch_eigen.sum(dim) + epsilon).sqrt(); Eigen::array broadcast_dim_col; broadcast_dim_col[1] = 1; broadcast_dim_col[0] = channels; in_g_batch_eigen.device(*place) = in_x_batch_eigen * tmp_eigen.broadcast(broadcast_dim_col); in_g_batch_eigen.device(*place) = in_g_batch_eigen / (norm_tmp_eigen * norm_tmp_eigen).broadcast(broadcast_dim_col); in_g_batch_eigen.device(*place) = outg_batch_eigen - in_g_batch_eigen; // outg_batch_eigen + (in_g_batch_eigen * -1); in_g_batch_eigen.device(*place) = in_g_batch_eigen / norm_tmp_eigen.broadcast(broadcast_dim_col); Eigen::array broadcast_dim_row; broadcast_dim_row[1] = fea_len; broadcast_dim_row[0] = 1; in_g_batch_eigen.device(*place) = in_g_batch_eigen * (scale_eigen.broadcast(broadcast_dim_row)); } } }; } // namespace operators } // namespace paddle