# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # gast is a generic AST to represent Python2 and Python3's Abstract Syntax Tree(AST). # It provides a compatibility layer between the AST of various Python versions, # as produced by ast.parse from the standard ast module. # See details in https://github.com/serge-sans-paille/gast/ import os from .base_transformer import ( BaseTransformer, ) from .early_return_transformer import ( EarlyReturnTransformer, ) from .assert_transformer import ( AssertTransformer, ) from .basic_api_transformer import ( BasicApiTransformer, ) from .break_continue_transformer import ( BreakContinueTransformer, BreakTransformOptimizer, ) from .call_transformer import ( CallTransformer, ) from .cast_transformer import ( CastTransformer, ) from .typehint_transformer import ( TypeHintTransformer, ) from .ifelse_transformer import ( IfElseTransformer, ) from .logical_transformer import ( LogicalTransformer, ) from .loop_transformer import ( LoopTransformer, ) from .print_transformer import ( PrintTransformer, ) from .return_transformer import ( ReturnTransformer, ) from .create_variable_transformer import ( CreateVariableTransformer, ) from .static_analysis import ( StaticAnalysisVisitor, ) from .tensor_shape_transformer import ( TensorShapeTransformer, ) from .decorator_transformer import ( DecoratorTransformer, ) from . import logging_utils from .utils import ast_to_source_code __all__ = ['DygraphToStaticAst'] def apply_optimization(transformers): """ Judge wheter to apply optimized transformation, such as BreakTransformOptimizer. And not all optimized transformations are applied by default. It's controlled by 'export FLAGS_optim_transformation=1' """ flag = str(os.environ.get('FLAGS_optim_transformation')) in [ '1', 'True', 'true', ] if flag: transformers.insert(3, BreakTransformOptimizer) class DygraphToStaticAst(BaseTransformer): """ Main class to transform Dygraph to Static Graph """ def __init__(self): self.translator_logger = logging_utils.TranslatorLogger() def get_static_ast(self, root): # save root for some analysis may need global AST self.root = root self.static_analysis_visitor = StaticAnalysisVisitor(root) self.static_analysis_root = ( self.static_analysis_visitor.get_node_wrapper_root() ) self.decorate_func_name = None self.transfer_from_node_type(self.static_analysis_root) return self.static_analysis_root def _apply(self, transformer, node_wrapper, log_level): transformer(node_wrapper).transform() self.translator_logger.log_transformed_code( log_level, self.root, transformer.__name__ ) def transfer_from_node_type(self, node_wrapper): self.translator_logger.log( 1, "Source code: \n{}".format(ast_to_source_code(self.root)) ) # Generic transformation self.visit(node_wrapper.node) transformers = [ EarlyReturnTransformer, BasicApiTransformer, # Basic Api TensorShapeTransformer, # Tensor.shape -> paddle.shape(Tensor) BreakContinueTransformer, # break/continue in loops ReturnTransformer, # return in functions LogicalTransformer, # logical and/or/not CreateVariableTransformer, # create undefined var for if / while / for LoopTransformer, # for/while -> while_op IfElseTransformer, # if/else -> cond_op AssertTransformer, # assert statement PrintTransformer, # print statement CallTransformer, # transform call recursively CastTransformer, # type casting statement DecoratorTransformer, # transform decorators to function call TypeHintTransformer, # remove all typehint in gast.Name ] apply_optimization(transformers) for index, transformer in enumerate(transformers): self._apply(transformer, node_wrapper, log_level=index + 1) self.translator_logger.log_transformed_code( logging_utils.LOG_AllTransformer, self.root, "All Transformers" ) def visit_FunctionDef(self, node): if self.decorate_func_name is None: self.decorate_func_name = node.name self.generic_visit(node) return node def get_module_name(self): """ Return the main function name which will be used as module name in ast_to_func. """ # Should consider BaseAPITransformer which add new module name in Yamei's PR. assert self.decorate_func_name, "decorate_func_name shall not be None." return self.decorate_func_name