# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import unittest import numpy as np import paddle.fluid.core as core import paddle.fluid as fluid from parallel_executor_test_base import TestParallelExecutorBase def fc_with_batchnorm(use_feed): img = fluid.layers.data(name='image', shape=[784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') hidden = img for _ in range(3): hidden = fluid.layers.fc( hidden, size=200, act='tanh', bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=1.0))) hidden = fluid.layers.batch_norm(input=hidden) prediction = fluid.layers.fc(hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) loss = fluid.layers.mean(loss) return loss class TestIrInplace(TestParallelExecutorBase): @classmethod def setUpClass(cls): os.environ['CPU_NUM'] = str(4) def _fc_with_batchnorm(self, ir_memory_optimize, enable_inplace, memory_opt=False): if not core.is_compiled_with_cuda(): return np.random.seed(5) img = np.random.random(size=[32, 784]).astype(np.float32) label = np.ones(shape=[32, 1], dtype='int64') self.check_network_convergence( fc_with_batchnorm, feed_dict={"image": img, "label": label}, use_cuda=True, memory_opt=memory_opt, use_ir_memory_optimize=ir_memory_optimize, enable_inplace=enable_inplace) def test_fc_with_batchnorm(self, delta=1e-3): loss00 = self._fc_with_batchnorm(False, False) loss10 = self._fc_with_batchnorm(True, False) loss01 = self._fc_with_batchnorm(False, True) loss11 = self._fc_with_batchnorm(True, True) self.assertAlmostEqual(loss00, loss10, delta=delta) self.assertAlmostEqual(loss00, loss01, delta=delta) self.assertAlmostEqual(loss00, loss11, delta=delta)