// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/kernels/funcs/im2col.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/unfold_functor.h" namespace phi { template void FoldGradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& out_grad, const std::vector& output_sizes, const std::vector& kernel_sizes, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, DenseTensor* x_grad) { ctx.template Alloc(x_grad); if (!x_grad) return; const auto& x_dims = x_grad->dims(); const int batch_size = static_cast(x_dims[0]); int output_height = (output_sizes[0] + 2 * paddings[0] - (dilations[0] * (kernel_sizes[0] - 1) + 1)) / strides[0] + 1; int output_width = (output_sizes[1] + 2 * paddings[1] - (dilations[1] * (kernel_sizes[1] - 1) + 1)) / strides[1] + 1; int n_input_plane = x_dims[1]; int n_output_plane = n_input_plane / (kernel_sizes[0] * kernel_sizes[1]); DDim out_shape = make_ddim({n_output_plane, output_sizes[0], output_sizes[1]}); DDim input_matrix_shape = make_ddim({x_dims[0], kernel_sizes[0], kernel_sizes[1], output_height, output_width}); phi::funcs::Im2ColFunctor im2col; for (int i = 0; i < batch_size; i++) { DenseTensor out_grad_batch = out_grad.Slice(i, i + 1).Resize(out_shape); DenseTensor x_grad_batch = x_grad->Slice(i, i + 1).Resize(input_matrix_shape); im2col(ctx, out_grad_batch, dilations, strides, paddings, &x_grad_batch); } } } // namespace phi