// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/kernels/cpu/conv_util.h" #include "paddle/phi/kernels/funcs/batch_norm_utils.h" #include "paddle/phi/kernels/funcs/blas/blas.h" #include "paddle/phi/kernels/funcs/im2col.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/vol2col.h" namespace phi { template void ConvGradKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& filter_t, const DenseTensor& output_grad, const std::vector& strides, const std::vector& paddings_t, const std::string& padding_algorithm, const std::vector& dilations_t, int groups, const std::string& data_format, DenseTensor* input_grad, DenseTensor* filter_grad) { // The filter and filter_grad will be reshaped in the calculations, // so here use an assignment operation, // that avoids modifying the variable in the Scope. if (!input_grad && !filter_grad) return; std::vector paddings = paddings_t; std::vector dilations = dilations_t; DenseTensor filter = filter_t; const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); DenseTensor transformed_input(input.type()); DenseTensor transformed_output_grad(output_grad.type()); if (channel_last) { ResizeToChannelFirst(dev_ctx, &input, &transformed_input); TransToChannelFirst(dev_ctx, &input, &transformed_input); ResizeToChannelFirst( dev_ctx, &output_grad, &transformed_output_grad); TransToChannelFirst( dev_ctx, &output_grad, &transformed_output_grad); } else { transformed_input = input; transformed_output_grad = output_grad; } // update padding and dilation auto in_dims = transformed_input.dims(); auto filter_dims = filter.dims(); DDim in_data_dims = slice_ddim(in_dims, 2, in_dims.size()); DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = vectorize(filter_data_dims); UpdatePaddingAndDilation( &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize); const int batch_size = static_cast(transformed_input.dims()[0]); // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w} std::vector filter_shape_vec(vectorize(filter.dims())); // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w} std::vector output_shape_vec( vectorize(transformed_output_grad.dims())); // use col_shape in the im2col calculation // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d, // o_h, o_w} size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); col_shape_vec[0] = transformed_input.dims()[1] / groups; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2]; } DDim col_shape(make_ddim(col_shape_vec)); // use col_matrix_shape in the gemm calculation // size: (i_c/g * k_h * k_w, o_h * o_w) // or // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w) DDim col_matrix_shape = flatten_to_2d(col_shape, data_dim + 1); DDim input_shape = slice_ddim(transformed_input.dims(), 1, transformed_input.dims().size()); DDim filter_matrix_shape = {filter.dims()[0], filter.numel() / filter.dims()[0]}; filter.Resize(filter_matrix_shape); DDim output_matrix_shape = { transformed_output_grad.dims()[1], transformed_output_grad.numel() / (transformed_output_grad.dims()[0] * transformed_output_grad.dims()[1])}; // convolution backward input operator: gemm + col2im(or col2vol) // convolution backward weight operator: im2col(or vol2col) + gemm int in_step = static_cast(transformed_input.dims()[1]) / groups; int out_step = static_cast(transformed_output_grad.dims()[1]) / groups; bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations); DenseTensor col; // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. DenseTensor col_matrix; if (is_expand) { col.Resize(col_shape); dev_ctx.template Alloc(&col); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } phi::funcs::SetConstant set_zero; auto blas = phi::funcs::GetBlas(dev_ctx); if (input_grad) { dev_ctx.template Alloc(input_grad); DenseTensor transformed_input_grad(input_grad->type()); if (channel_last) { ResizeToChannelFirst( dev_ctx, input_grad, &transformed_input_grad); } else { transformed_input_grad = *input_grad; } // if is_expand is false, the operation of set_zero is unnecessary, // because math::matmul will reset input_grad. if (is_expand) { set_zero(dev_ctx, &transformed_input_grad, static_cast(0)); } phi::funcs::Col2ImFunctor col2im; phi::funcs::Col2VolFunctor col2vol; for (int i = 0; i < batch_size; i++) { DenseTensor out_grad_batch = transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape); DenseTensor in_grad_batch = transformed_input_grad.Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // gemm DenseTensor out_grad_slice = out_grad_batch.Slice(g * out_step, (g + 1) * out_step); DenseTensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); DenseTensor in_grad_slice = in_grad_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col_matrix.ShareDataWith(in_grad_slice); col_matrix.Resize(col_matrix_shape); } blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0), &col_matrix, T(0.0)); if (is_expand && data_dim == 2U) { col2im(dev_ctx, col, dilations, strides, std::vector{ paddings[0], paddings[2], paddings[1], paddings[3]}, &in_grad_slice); } else if (is_expand && data_dim == 3U) { col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice); } } } if (channel_last) { TransToChannelLast( dev_ctx, &transformed_input_grad, input_grad); } } if (filter_grad) { dev_ctx.template Alloc(filter_grad); Tensor filter_grad_ = *filter_grad; filter_grad_.Resize(filter_matrix_shape); set_zero(dev_ctx, filter_grad, static_cast(0)); phi::funcs::Im2ColFunctor im2col; phi::funcs::Vol2ColFunctor vol2col; for (int i = 0; i < batch_size; i++) { DenseTensor out_grad_batch = transformed_output_grad.Slice(i, i + 1).Resize(output_matrix_shape); DenseTensor in_batch = transformed_input.Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // im2col DenseTensor out_grad_slice = out_grad_batch.Slice(g * out_step, (g + 1) * out_step); DenseTensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col.ShareDataWith(in_slice); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { im2col(dev_ctx, in_slice, dilations, strides, std::vector{ paddings[0], paddings[2], paddings[1], paddings[3]}, &col); } else if (data_dim == 3U) { vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col); } // gemm DenseTensor filter_grad_slice = filter_grad_.Slice(g * out_step, (g + 1) * out_step); blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0), &filter_grad_slice, T(1.0)); } } } } template void ConvGradGradKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& filter, const DenseTensor& out_grad, const paddle::optional& input_grad_grad, const paddle::optional& filter_grad_grad, const std::vector& strides_t, const std::vector& paddings_t, const std::string& padding_algorithm, const std::vector& dilations_t, int groups, const std::string& data_format, DenseTensor* input_grad, DenseTensor* filter_grad, DenseTensor* out_grad_grad) { const DenseTensor* X = &input; const DenseTensor* dY = &out_grad; const DenseTensor* ddX = input_grad_grad.get_ptr(); const DenseTensor* ddW_in = filter_grad_grad.get_ptr(); DenseTensor* ddY = out_grad_grad; DenseTensor* dW = filter_grad; DenseTensor* dX = input_grad; DenseTensor W = filter; if (!ddY && !dW && !dX) return; const std::vector strides = strides_t; std::vector paddings = paddings_t; std::vector dilations = dilations_t; const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); // transform Tensor DenseTensor transformed_X(X->type()); DenseTensor transformed_dY(dY->type()); DenseTensor transformed_ddX(X->type()); if (channel_last) { ResizeToChannelFirst(dev_ctx, X, &transformed_X); TransToChannelFirst(dev_ctx, X, &transformed_X); ResizeToChannelFirst(dev_ctx, dY, &transformed_dY); TransToChannelFirst(dev_ctx, dY, &transformed_dY); if (ddX) { ResizeToChannelFirst(dev_ctx, ddX, &transformed_ddX); TransToChannelFirst(dev_ctx, ddX, &transformed_ddX); } } else { transformed_X = *X; transformed_dY = *dY; if (ddX) { transformed_ddX = *ddX; } } // update padding and dilation auto in_dims = transformed_X.dims(); auto filter_dims = W.dims(); DDim in_data_dims = slice_ddim(in_dims, 2, in_dims.size()); DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = vectorize(filter_data_dims); UpdatePaddingAndDilation( &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize); const int batch_size = static_cast(transformed_X.dims()[0]); std::vector filter_shape_vec(vectorize(W.dims())); std::vector output_shape_vec(vectorize(transformed_dY.dims())); size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); // col_shape [in_channel/group, kh, kw, oh, ow] col_shape_vec[0] = transformed_X.dims()[1] / groups; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + data_dim + 1] = output_shape_vec[j + 2]; } DDim col_shape(make_ddim(col_shape_vec)); // col_matrix_shape [in_channel/group * kh * kw, oh * ow] DDim col_matrix_shape = flatten_to_2d(col_shape, data_dim + 1); // input_shape [Cin, H, W] DDim input_shape = slice_ddim(transformed_X.dims(), 1, transformed_X.dims().size()); // filter_matrix_shape [Cout, Cin * kh * kw] DDim filter_matrix_shape = {W.dims()[0], W.numel() / W.dims()[0]}; W.Resize(filter_matrix_shape); DDim output_matrix_shape = { transformed_dY.dims()[1], transformed_dY.numel() / (transformed_dY.dims()[0] * transformed_dY.dims()[1])}; int in_step = static_cast(transformed_X.dims()[1]) / groups; int out_step = static_cast(transformed_dY.dims()[1]) / groups; bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations); DenseTensor col; DenseTensor col_matrix; if (is_expand) { col.Resize(col_shape); dev_ctx.template Alloc(&col); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } phi::funcs::SetConstant set_zero; auto blas = phi::funcs::GetBlas(dev_ctx); // dx convolution double grad: gemm + col2im(col2vol) // dx = ddw * dy ==> dx(N, Cin, H, W), ddw(Cout, Cin, kh, kw), dy(N, Cout, // oH, oW) if (dX && ddW_in) { Tensor ddW; ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape); dev_ctx.template Alloc(dX); DenseTensor transformed_dX(dX->type()); if (channel_last) { ResizeToChannelFirst(dev_ctx, dX, &transformed_dX); } else { transformed_dX = *dX; } // if is_expand is false, the operation of set_zero is unnecessary // because math::matmul will reset dx if (is_expand) { set_zero(dev_ctx, &transformed_dX, static_cast(0)); } phi::funcs::Col2ImFunctor col2im; phi::funcs::Col2VolFunctor col2vol; for (int i = 0; i < batch_size; i++) { DenseTensor dy_batch = transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape); DenseTensor dx_batch = transformed_dX.Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // gemm DenseTensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step); DenseTensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step); DenseTensor dx_slice = dx_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col_matrix.ShareDataWith(dx_slice); col_matrix.Resize(col_matrix_shape); } blas.MatMul( ddw_slice, true, dy_slice, false, T(1.0), &col_matrix, T(0.0)); if (is_expand && data_dim == 2U) { col2im(dev_ctx, col, dilations, strides, std::vector{ paddings[0], paddings[2], paddings[1], paddings[3]}, &dx_slice); } else if (is_expand && data_dim == 3U) { col2vol(dev_ctx, col, dilations, strides, paddings, &dx_slice); } } } if (channel_last) { TransToChannelLast(dev_ctx, &transformed_dX, dX); } } // dw = ddx * dy ==> dw(Cout, Cin, kh, kw), ddx(N, Cin, H, W), dy(N, Cout, // oH, oW) // dw convolution double grad: im2col(vol2col) + gemm if (dW && ddX) { dev_ctx.template Alloc(dW); set_zero(dev_ctx, dW, static_cast(0)); DenseTensor dW_arr = *dW; dW_arr.Resize(filter_matrix_shape); phi::funcs::Im2ColFunctor im2col; phi::funcs::Vol2ColFunctor vol2col; for (int i = 0; i < batch_size; ++i) { DenseTensor dy_batch = transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape); Tensor ddx_batch = transformed_ddX.Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; ++g) { // im2col DenseTensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step); DenseTensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col.ShareDataWith(ddx_slice); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { im2col(dev_ctx, ddx_slice, dilations, strides, std::vector{ paddings[0], paddings[2], paddings[1], paddings[3]}, &col); } else if (data_dim == 3U) { vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col); } DenseTensor dw_slice = dW_arr.Slice(g * out_step, (g + 1) * out_step); blas.MatMul( dy_slice, false, col_matrix, true, T(1.0), &dw_slice, T(1.0)); } } } // ddy = w * ddx + x * ddw ==> ddy(N, Cout, oH, oW), x/ddx(N, Cin, H, W), // w/ddw(Cout, Cin, kh, kw) // ddy convolution double grad: im2col(vol2col) + gemm if (ddY) { dev_ctx.template Alloc(ddY); DenseTensor transformed_ddY(ddY->type()); if (channel_last) { ResizeToChannelFirst(dev_ctx, ddY, &transformed_ddY); } else { transformed_ddY = *ddY; } set_zero(dev_ctx, &transformed_ddY, static_cast(0)); phi::funcs::Im2ColFunctor im2col; phi::funcs::Vol2ColFunctor vol2col; for (int i = 0; i < batch_size; ++i) { DenseTensor ddy_batch = transformed_ddY.Slice(i, i + 1).Resize(output_matrix_shape); for (int g = 0; g < groups; ++g) { // gemm DenseTensor ddy_slice = ddy_batch.Slice(g * out_step, (g + 1) * out_step); if (ddX) { DenseTensor ddx_batch = transformed_ddX.Slice(i, i + 1).Resize(input_shape); DenseTensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col.ShareDataWith(ddx_slice); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { im2col(dev_ctx, ddx_slice, dilations, strides, std::vector{ paddings[0], paddings[2], paddings[1], paddings[3]}, &col); } else if (data_dim == 3U) { vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col); } DenseTensor w_slice = W.Slice(g * out_step, (g + 1) * out_step); blas.MatMul( w_slice, false, col_matrix, false, T(1.0), &ddy_slice, T(0.0)); } if (ddW_in) { DenseTensor x_batch = transformed_X.Slice(i, i + 1).Resize(input_shape); DenseTensor x_slice = x_batch.Slice(g * in_step, (g + 1) * in_step); DenseTensor ddW; ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape); if (!is_expand) { col.ShareDataWith(x_slice); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { im2col(dev_ctx, x_slice, dilations, strides, std::vector{ paddings[0], paddings[2], paddings[1], paddings[3]}, &col); } else if (data_dim == 3U) { vol2col(dev_ctx, x_slice, dilations, strides, paddings, &col); } // gemm DenseTensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step); blas.MatMul( ddw_slice, false, col_matrix, false, T(1.0), &ddy_slice, T(1.0)); } } } if (channel_last) { TransToChannelLast(dev_ctx, &transformed_ddY, ddY); } } } } // namespace phi