# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import gc import unittest import time import paddle import paddle.incubate.multiprocessing as mp REPEAT = 20 HAS_SHM_FILES = os.path.isdir('/dev/shm') def fill_tensor(queue, event): data = queue.get() with paddle.no_grad(): data[0][:] = 5 data[1][:] = 5 event.set() def send_tensor(queue, event, device, dtype): tensor = paddle.ones([5, 5], dtype=dtype) queue.put(tensor) queue.put(tensor) event.wait() def send_parambase(queue, event, device, dtype): tensor = paddle.nn.Layer().create_parameter( [5, 5], dtype=dtype, default_initializer=paddle.nn.initializer.Constant(value=1.0), ) queue.put(tensor) queue.put(tensor) event.wait() class leak_checker: def __init__(self, test_case): self.checked_pids = [os.getpid()] self.test_case = test_case def __enter__(self): self.next_fds = self._get_next_fds(10) return self def __exit__(self, *args): if args[0] is None: self.test_case.assertFalse(self.has_shm_files()) return False def check_pid(self, pid): self.checked_pids.append(pid) def _get_next_fds(self, n=1): fds = [os.dup(0) for i in range(n)] for fd in fds: os.close(fd) return fds def has_shm_files(self, wait=True): if not HAS_SHM_FILES: return False result = self._has_shm_files() if result and wait: time.sleep(0.5) return self._has_shm_files() return result def _has_shm_files(self): gc.collect() names = ['paddle_' + str(pid) for pid in self.checked_pids] for filename in os.listdir('/dev/shm'): for name in names: if filename.startswith(name): print("have", filename) return True return False class TestMultiprocessingBase(unittest.TestCase): def get_tensor(self, device="cpu"): self.device = device.lower() place = None tensor = paddle.zeros([5, 5], dtype="float32") return tensor def get_parameter(self): w = paddle.nn.Layer().create_parameter( [10, 10], default_initializer=paddle.nn.initializer.Constant(value=0.0), ) return w def _test_empty(self, dtype="float32"): q = mp.Queue() empty = paddle.to_tensor([], dtype=dtype) q.put(empty) out = q.get(timeout=1) self.assertEqual(str(out), str(empty)) def _test_sharing( self, ctx=mp, device='cpu', dtype="float32", repeat=1, param=False ): def test_fill(): if param: x = self.get_parameter() y = (x[:, 1]).detach() else: x = self.get_tensor() y = x[:, 1] data = [x, y] queue = ctx.Queue() event = ctx.Event() queue.put(data) process = ctx.Process(target=fill_tensor, args=(queue, event)) process.daemon = True lc.check_pid(process.pid) process.start() event.wait(30) self.assertTrue(event.is_set()) self.assertTrue(data[0].equal(5).all()) self.assertTrue(data[1].equal(5).all()) process.join(1 if device != "gpu" else 10) self.assertFalse(process.is_alive()) def test_receive(): queue = ctx.Queue() event = ctx.Event() process = ctx.Process( target=send_parambase if param else send_tensor, args=(queue, event, device, dtype), ) process.daemon = True lc.check_pid(process.pid) process.start() t1 = queue.get() t2 = queue.get() self.assertTrue(t1.equal(1).all()) del t1, t2 event.set() process.join(1 if device != "gpu" else 10) self.assertFalse(process.is_alive()) with leak_checker(self) as lc: for _ in range(repeat): test_fill() test_receive() class TestMultiprocessingCpu(TestMultiprocessingBase): def func_test_pass_tensor(self): paddle.set_device("cpu") self._test_sharing(repeat=REPEAT) def test_pass_tensor(self): self.func_test_pass_tensor() def func_test_pass_parambase(self): paddle.set_device("cpu") self._test_sharing(repeat=1, param=True) def test_pass_parambase(self): self.func_test_pass_parambase() def func_test_pass_empty(self): paddle.set_device("cpu") self._test_empty() def test_pass_empty(self): self.func_test_pass_empty() class TestMultiprocessingGpu(TestMultiprocessingBase): @unittest.skipIf( not paddle.fluid.core.is_compiled_with_cuda(), "core is not compiled with CUDA", ) def func_test_pass_tensor(self): paddle.set_device("gpu") self._test_sharing(mp.get_context("spawn"), "gpu") def test_pass_tensor(self): self.func_test_pass_tensor() if __name__ == "__main__": unittest.main()