# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import paddle import numpy as np import traceback from collections import namedtuple from .. import core from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher from ..multiprocess_utils import ( _cleanup_mmap, CleanupFuncRegistrar, MP_STATUS_CHECK_INTERVAL, ) from ..framework import _non_static_mode, _in_eager_without_dygraph_check from .flat import _flatten_batch # NOTE: queue has a different name in python2 and python3 import queue __all__ = ['get_worker_info'] class _IterableDatasetStopIteration: def __init__(self, worker_id): self.worker_id = worker_id class _ResumeIteration: pass class _DatasetKind: MAP = 0 ITER = 1 @staticmethod def create_fetcher( kind, dataset, auto_collate_batch, collate_fn, drop_last ): if kind == _DatasetKind.MAP: return _MapDatasetFetcher( dataset, auto_collate_batch, collate_fn, drop_last ) elif kind == _DatasetKind.ITER: return _IterableDatasetFetcher( dataset, auto_collate_batch, collate_fn, drop_last ) else: raise NotImplementedError("unknown Dataset kind {}".format(kind)) class ParentWatchDog: def __init__(self): self._parent_pid = os.getppid() self._parent_alive = True def is_alive(self): if self._parent_alive: self._parent_alive = os.getppid() == self._parent_pid return self._parent_alive # worker information for each workers, used for splitting data copy # for IteratorDataset in worker processes. _worker_info = None def get_worker_info(): """ Get DataLoader worker process information function, this function is used to split data copy in worker process for IterableDataset (see :code:`paddle.io.IterableDataset`), worker information contains following fields: :attr:`num_workers`: total worker process number, see `paddle.io.DataLoader` :attr:`id`: the worker processs id, count from 0 to :attr:`num_workers - 1` :attr:`dataset`: the dataset object in this worker process Returns: WorkerInfo: an instance of WorkerInfo which contains fields above. .. note:: For more usage and examples, please see :code:`paddle.io.IterableDataset` Example: .. code-block:: python import math import paddle import numpy as np from paddle.io import IterableDataset, DataLoader, get_worker_info class SplitedIterableDataset(IterableDataset): def __init__(self, start, end): self.start = start self.end = end def __iter__(self): worker_info = get_worker_info() if worker_info is None: iter_start = self.start iter_end = self.end else: per_worker = int( math.ceil((self.end - self.start) / float( worker_info.num_workers))) worker_id = worker_info.id iter_start = self.start + worker_id * per_worker iter_end = min(iter_start + per_worker, self.end) for i in range(iter_start, iter_end): yield np.array([i]) place = paddle.CPUPlace() dataset = SplitedIterableDataset(start=2, end=9) dataloader = DataLoader( dataset, places=place, num_workers=2, batch_size=1, drop_last=True) for data in dataloader: print(data) # outputs: [2, 5, 3, 6, 4, 7] """ return _worker_info class WorkerInfo: __initialized = False def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) self.__initialized = True def __setattr__(self, key, val): if self.__initialized: raise RuntimeError( "Cannot assign attributes to {} objects".format( self.__class__.__name__ ) ) return super().__setattr__(key, val) class _WorkerException: def __init__(self, worker_id, exc_info=None): self.worker_id = worker_id exc_info = exc_info or sys.exc_info() self.exc_type = exc_info[0] self.exc_msg = "".join(traceback.format_exception(*exc_info)) def reraise(self): msg = "DataLoader worker({}) caught {} with message:\n{}".format( self.worker_id, self.exc_type.__name__, self.exc_msg ) if getattr(self.exc_type, "message", None): raise self.exc_type(message=msg) raise self.exc_type(msg) # The function `_generate_states` is adapted from `numpy.random.SeedSequence` # from https://github.com/numpy/numpy/blob/main/numpy/random/bit_generator.pyx # Here is the copyright: # SeedSequence is derived from Melissa E. O'Neill's C++11 `std::seed_seq` # implementation, as it has a lot of nice properties that we want. # https://gist.github.com/imneme/540829265469e673d045 # http://www.pcg-random.org/posts/developing-a-seed_seq-alternative.html # The MIT License (MIT) # Copyright (c) 2015 Melissa E. O'Neill # Copyright (c) 2019 NumPy Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. INIT_A = 0x43B0D7E5 MULT_A = 0x931E8875 INIT_B = 0x8B51F9DD MULT_B = 0x58F38DED MIX_MULT_L = 0xCA01F9DD MIX_MULT_R = 0x4973F715 XSHIFT = np.dtype(np.uint32).itemsize * 8 // 2 MASK32 = 0xFFFFFFFF def _generate_states(base_seed=0, worker_id=0): # init hash constant hash_const_A = INIT_A hash_const_B = INIT_B def hash(value): nonlocal hash_const_A value = (value ^ hash_const_A) & MASK32 hash_const_A = (hash_const_A * MULT_A) & MASK32 value = (value * hash_const_A) & MASK32 value = (value ^ (value >> XSHIFT)) & MASK32 return value def mix(x, y): result_x = (MIX_MULT_L * x) & MASK32 result_y = (MIX_MULT_R * y) & MASK32 result = (result_x - result_y) & MASK32 result = (result ^ (result >> XSHIFT)) & MASK32 return result # init entropys with based_seed and worker_id and calculate pool entropys = [worker_id, base_seed & MASK32, base_seed >> 32, 0] pool = [hash(entropy) for entropy in entropys] # mix all bits together for i in range(len(pool)): for j in range(len(pool)): if i != j: pool[j] = mix(pool[j], hash(pool[i])) states = [] for p in pool: state = (p ^ hash_const_B) & MASK32 hash_const_B = (hash_const_B * MULT_B) & MASK32 state = (state * hash_const_B) & MASK32 state = (state ^ (state >> XSHIFT)) & MASK32 states.append(state) return states def _worker_loop( dataset, dataset_kind, indices_queue, out_queue, done_event, auto_collate_batch, collate_fn, drop_last, init_fn, worker_id, num_workers, use_shared_memory, base_seed, ): try: # NOTE: [ mmap files clear ] When the child process exits unexpectedly, # some shared memory objects may have been applied for but have not yet # been put into the inter-process Queue. This part of the object needs # to be cleaned up when the process ends. CleanupFuncRegistrar.register(_cleanup_mmap) # set signal handler core._set_process_signal_handler() # set different numpy seed for each worker try: import numpy as np import time import random except ImportError: pass else: seed = base_seed + worker_id random.seed(seed) paddle.seed(seed) np.random.seed(_generate_states(base_seed, worker_id)) global _worker_info _worker_info = WorkerInfo( id=worker_id, num_workers=num_workers, dataset=dataset, seed=base_seed, ) init_exception = None try: if init_fn is not None: init_fn(worker_id) fetcher = _DatasetKind.create_fetcher( dataset_kind, dataset, auto_collate_batch, collate_fn, drop_last ) except: init_exception = _WorkerException(worker_id) iterator_drained = False parent_watch_dog = ParentWatchDog() while parent_watch_dog.is_alive(): try: data = indices_queue.get(MP_STATUS_CHECK_INTERVAL) except queue.Empty: continue if isinstance(data, _ResumeIteration): out_queue.put((data, None, None)) iterator_drained = False fetcher = _DatasetKind.create_fetcher( dataset_kind, dataset, auto_collate_batch, collate_fn, True ) continue # None as poison piil, so worker event should be set if data is None: assert ( done_event.is_set() or iterator_drained ), "get None when worker done_event set" break # If worker done event is set but get still get data in # indices_queue, remaining data should be get and skipped. if done_event.is_set() or iterator_drained: continue idx, indices = data try: if init_exception is not None: batch = init_exception init_exception = None else: # NOTE: GPU tensor operation is not supported in sub-process # but default device is GPU in paddle-gpu version, which # may copy CPU tensor to GPU even if users want to use # CPU tensor operation, so we add CPUPlace guard here # to make sure tensor will be operated only on CPU with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()): batch = fetcher.fetch(indices) except Exception as e: if ( isinstance(e, StopIteration) and dataset_kind == _DatasetKind.ITER ): out_queue.put(_IterableDatasetStopIteration(worker_id)) iterator_drained = True else: out_queue.put((idx, _WorkerException(worker_id), None)) else: if isinstance(batch, _WorkerException): out_queue.put((idx, batch, None)) batch, structure = _flatten_batch(batch) if use_shared_memory: # NOTE: In eager mode, Tensor._share_memory has no # effect, fall back to _array_to_share_memory_tensor def tensor_share_memory(tensor): if _in_eager_without_dygraph_check(): return core._array_to_share_memory_tensor(tensor) return tensor._share_memory() tensor_list = [ core._array_to_share_memory_tensor(b) if isinstance(b, np.ndarray) else tensor_share_memory(b) for b in batch ] out_queue.put((idx, tensor_list, structure)) core._remove_tensor_list_mmap_fds(tensor_list) else: out_queue.put((idx, batch, structure)) except KeyboardInterrupt: # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process pass except: raise finally: if use_shared_memory: _cleanup_mmap()