# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from .. import core __all__ = [ "Sampler", "SequenceSampler", "RandomSampler", "WeightedRandomSampler", ] class Sampler: """ An abstract class to encapsulate methods and behaviors of samplers. All sampler used by :code:`paddle.io.BatchSampler` should be a subclass of :code:`paddle.io.Sampler`, BatchSampler subclasses should implement following methods: :code:`__iter__`: return sample index iterably, which iterate over indices of dataset elements :code:`__len__`: the number of sample in :attr:`data_source` Args: data_source(Dataset, optional): this could be an instance of :code:`paddle.io.Dataset` other Python object which implemented :code:`__len__` for Sampler to get indices as the range of :attr:`dataset` length. Default None. Returns: Sampler: an iterable object for sample indices iterating Examples: .. code-block:: python from paddle.io import Dataset, Sampler class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([784]).astype('float32') label = np.random.randint(0, 9, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples class MySampler(Sampler): def __init__(self, data_source): self.data_source = data_source def __iter__(self): return iter(range(len(self.data_source))) def __len__(self): return len(self.data_source) sampler = MySampler(data_source=RandomDataset(100)) for index in sampler: print(index) see `paddle.io.BatchSampler` see `paddle.io.DataLoader` """ def __init__(self, data_source=None): self.data_source = data_source def __iter__(self): raise NotImplementedError # Not define __len__ method in this base class here for __len__ # is not needed in same sence, e.g. paddle.io.IterableDataset class SequenceSampler(Sampler): """ Iterate samples sequentially, yield :code:`0, 1, 2, ..., len(data_source) -1` generally, Args: data_source(Dataset): dataset to sample, this could be an instance of :code:`paddle.io.Dataset` other Python object which implemented :code:`__len__`. Returns: Sampler: a Sampler yield sample index sequentially Examples: .. code-block:: python from paddle.io import Dataset, SequenceSampler class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([784]).astype('float32') label = np.random.randint(0, 9, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples sampler = SequenceSampler(data_source=RandomDataset(100)) for index in sampler: print(index) see `paddle.io.Sampler` """ def __init__(self, data_source): self.data_source = data_source def __iter__(self): return iter(range(len(self.data_source))) def __len__(self): return len(self.data_source) class RandomSampler(Sampler): """ Iterate samples randomly, yield shuffled indices, if :attr:`replacement=False`, yield shuffled indices of the whole data souce, if :attr:`replacement=True`, :attr:`num_samples` can set to specify the sample number to draw. Args: data_source(Dataset): dataset to sample, this could be an instance of :code:`paddle.io.Dataset` other Python object which implemented :code:`__len__`. replacement(bool): If False, sample the whole dataset, If False, set :attr:`num_samples` for how many sample to draw. Default False. num_samples(int): set sample number to draw if :attr:`replacement` is True. Default None. generator(Generator): specify a generator to sample the data source. Default None Returns: Sampler: a Sampler yield sample index randomly Examples: .. code-block:: python from paddle.io import Dataset, RandomSampler class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([784]).astype('float32') label = np.random.randint(0, 9, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples sampler = RandomSampler(data_source=RandomDataset(100)) for index in sampler: print(index) see `paddle.io.Sampler` """ def __init__( self, data_source, replacement=False, num_samples=None, generator=None ): self.data_source = data_source self.replacement = replacement self._num_samples = num_samples self.generator = generator if not isinstance(self.replacement, bool): raise TypeError( "expect boolean value for replacement, but got " "replacement={}".format(self.replacement) ) if self._num_samples is not None and not replacement: raise ValueError( "num_samples should not be specified while replacement is False" ) if not isinstance(self.num_samples, int) or self.num_samples <= 0: raise ValueError( "num_samples should be a positive integer, " "but got num_samples={}".format(self.num_samples) ) @property def num_samples(self): if self._num_samples is None: return len(self.data_source) return self._num_samples def __iter__(self): n = len(self.data_source) if self.generator: for i in range(self.num_samples): try: index = next(self.generator) except StopIteration: return yield index else: if self.replacement: for index in np.random.choice( np.arange(n), self.num_samples, replace=True ).tolist(): yield index else: for index in np.random.choice( np.arange(n), n, replace=False ).tolist(): yield index def __len__(self): return self.num_samples def _weighted_sample(weights, num_samples, replacement=True): if isinstance(weights, core.LoDTensor): weights = weights.numpy() if isinstance(weights, (list, tuple)): weights = np.array(weights) assert isinstance( weights, np.ndarray ), "weights should be paddle.Tensor, numpy.ndarray, list or tuple" assert len(weights.shape) <= 2, "weights should be a 1-D or 2-D array" weights = weights.reshape((-1, weights.shape[-1])) assert np.all(weights >= 0.0), "weights should be positive value" assert not np.any(weights == np.inf), "weights shoule not be INF" assert not np.any(weights == np.nan), "weights shoule not be NaN" non_zeros = np.sum(weights > 0.0, axis=1) assert np.all(non_zeros > 0), "weights should have positive values" if not replacement: assert np.all(non_zeros >= num_samples), ( "weights positive value number should not " "less than num_samples when replacement=False" ) weights = weights / weights.sum(axis=1) rets = [] for i in range(weights.shape[0]): ret = np.random.choice( weights.shape[1], num_samples, replacement, weights[i] ) rets.append(ret) return np.array(rets) class WeightedRandomSampler(Sampler): """ Random sample with given weights (probabilities), sampe index will be in range [0, len(weights) - 1], if :attr:`replacement` is True, index can be sampled multiple times. Args: weights(numpy.ndarray|paddle.Tensor|list|tuple): sequence of weights, should be numpy array, paddle.Tensor, list or tuple num_samples(int): set sample number to draw from sampler. replacement(bool): Whether to draw sample with replacements, default True Returns: Sampler: a Sampler yield sample index randomly by given weights Examples: .. code-block:: python from paddle.io import WeightedRandomSampler sampler = WeightedRandomSampler(weights=[0.1, 0.3, 0.5, 0.7, 0.2], num_samples=5, replacement=True) for index in sampler: print(index) """ def __init__(self, weights, num_samples, replacement=True): if not isinstance(num_samples, int) or num_samples <= 0: raise ValueError("num_samples should be a positive integer") if not isinstance(replacement, bool): raise ValueError("replacement should be a boolean value") self.weights = weights self.num_samples = num_samples self.replacement = replacement def __iter__(self): idxs = _weighted_sample( self.weights, self.num_samples, self.replacement ) return iter(idxs.reshape((-1)).tolist()) def __len__(self): mul = np.prod(self.weights.shape) // self.weights.shape[-1] return self.num_samples * mul