# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle.fluid.communicator import FLCommunicator from paddle.distributed.fleet.proto import the_one_ps_pb2 from google.protobuf import text_format from paddle.distributed.ps.utils.public import is_distributed_env from paddle.distributed import fleet import time import abc import os import logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter( fmt='%(asctime)s %(levelname)-2s [%(filename)s:%(lineno)d] %(message)s' ) ch = logging.StreamHandler() ch.setFormatter(formatter) logger.addHandler(ch) class ClientInfoAttr: CLIENT_ID = 0 DEVICE_TYPE = 1 COMPUTE_CAPACITY = 2 BANDWIDTH = 3 class FLStrategy: JOIN = 0 WAIT = 1 FINISH = 2 class ClientSelectorBase(abc.ABC): def __init__(self, fl_clients_info_mp): self.fl_clients_info_mp = fl_clients_info_mp self.clients_info = {} self.fl_strategy = {} def parse_from_string(self): if not self.fl_clients_info_mp: logger.warning("fl-ps > fl_clients_info_mp is null!") for client_id, info in self.fl_clients_info_mp.items(): self.fl_client_info_desc = the_one_ps_pb2.FLClientInfo() text_format.Parse( bytes(info, encoding="utf8"), self.fl_client_info_desc ) self.clients_info[client_id] = {} self.clients_info[client_id][ ClientInfoAttr.DEVICE_TYPE ] = self.fl_client_info_desc.device_type self.clients_info[client_id][ ClientInfoAttr.COMPUTE_CAPACITY ] = self.fl_client_info_desc.compute_capacity self.clients_info[client_id][ ClientInfoAttr.BANDWIDTH ] = self.fl_client_info_desc.bandwidth @abc.abstractmethod def select(self): pass class ClientSelector(ClientSelectorBase): def __init__(self, fl_clients_info_mp): super().__init__(fl_clients_info_mp) self.__fl_strategy = {} def select(self): self.parse_from_string() for client_id in self.clients_info: logger.info( "fl-ps > client {} info : {}".format( client_id, self.clients_info[client_id] ) ) # ......... to implement ...... # fl_strategy_desc = the_one_ps_pb2.FLStrategy() fl_strategy_desc.iteration_num = 99 fl_strategy_desc.client_id = 0 fl_strategy_desc.next_state = "JOIN" str_msg = text_format.MessageToString(fl_strategy_desc) self.__fl_strategy[client_id] = str_msg return self.__fl_strategy class FLClientBase(abc.ABC): def __init__(self): pass def set_basic_config(self, role_maker, config, metrics): self.role_maker = role_maker self.config = config self.total_train_epoch = int(self.config.get("runner.epochs")) self.train_statical_info = dict() self.train_statical_info['speed'] = [] self.epoch_idx = 0 self.worker_index = fleet.worker_index() self.main_program = paddle.static.default_main_program() self.startup_program = paddle.static.default_startup_program() self._client_ptr = fleet.get_fl_client() self._coordinators = self.role_maker._get_coordinator_endpoints() logger.info( "fl-ps > coordinator enpoints: {}".format(self._coordinators) ) self.strategy_handlers = dict() self.exe = None self.use_cuda = int(self.config.get("runner.use_gpu")) self.place = paddle.CUDAPlace(0) if self.use_cuda else paddle.CPUPlace() self.print_step = int(self.config.get("runner.print_interval")) self.debug = self.config.get("runner.dataset_debug", False) self.reader_type = self.config.get("runner.reader_type", "QueueDataset") self.set_executor() self.make_save_model_path() self.set_metrics(metrics) def set_train_dataset_info(self, train_dataset, train_file_list): self.train_dataset = train_dataset self.train_file_list = train_file_list logger.info( "fl-ps > {}, data_feed_desc:\n {}".format( type(self.train_dataset), self.train_dataset._desc() ) ) def set_test_dataset_info(self, test_dataset, test_file_list): self.test_dataset = test_dataset self.test_file_list = test_file_list def set_train_example_num(self, num): self.train_example_nums = num def load_dataset(self): if self.reader_type == "InmemoryDataset": self.train_dataset.load_into_memory() def release_dataset(self): if self.reader_type == "InmemoryDataset": self.train_dataset.release_memory() def set_executor(self): self.exe = paddle.static.Executor(self.place) def make_save_model_path(self): self.save_model_path = self.config.get("runner.model_save_path") if self.save_model_path and (not os.path.exists(self.save_model_path)): os.makedirs(self.save_model_path) def set_dump_fields(self): # DumpField # TrainerDesc -> SetDumpParamVector -> DumpParam -> DumpWork if self.config.get("runner.need_dump"): self.debug = True dump_fields_path = "{}/epoch_{}".format( self.config.get("runner.dump_fields_path"), self.epoch_idx ) dump_fields = self.config.get("runner.dump_fields", []) dump_param = self.config.get("runner.dump_param", []) persist_vars_list = self.main_program.all_parameters() persist_vars_name = [ str(param).split(":")[0].strip().split()[-1] for param in persist_vars_list ] logger.info( "fl-ps > persist_vars_list: {}".format(persist_vars_name) ) if dump_fields_path is not None: self.main_program._fleet_opt[ 'dump_fields_path' ] = dump_fields_path if dump_fields is not None: self.main_program._fleet_opt["dump_fields"] = dump_fields if dump_param is not None: self.main_program._fleet_opt["dump_param"] = dump_param def set_metrics(self, metrics): self.metrics = metrics self.fetch_vars = [var for _, var in self.metrics.items()] class FLClient(FLClientBase): def __init__(self): super().__init__() def __build_fl_client_info_desc(self, state_info): # ......... to implement ...... # state_info = { ClientInfoAttr.DEVICE_TYPE: "Andorid", ClientInfoAttr.COMPUTE_CAPACITY: 10, ClientInfoAttr.BANDWIDTH: 100, } client_info = the_one_ps_pb2.FLClientInfo() client_info.device_type = state_info[ClientInfoAttr.DEVICE_TYPE] client_info.compute_capacity = state_info[ ClientInfoAttr.COMPUTE_CAPACITY ] client_info.bandwidth = state_info[ClientInfoAttr.BANDWIDTH] str_msg = text_format.MessageToString(client_info) return str_msg def run(self): self.register_default_handlers() self.print_program() self.strategy_handlers['initialize_model_params']() self.strategy_handlers['init_worker']() self.load_dataset() self.train_loop() self.release_dataset() self.strategy_handlers['finish']() def train_loop(self): while self.epoch_idx < self.total_train_epoch: logger.info("fl-ps > curr epoch idx: {}".format(self.epoch_idx)) self.strategy_handlers['train']() self.strategy_handlers['save_model']() self.barrier() state_info = { "client id": self.worker_index, "auc": 0.9, "epoch": self.epoch_idx, } self.push_fl_client_info_sync(state_info) strategy_dict = self.pull_fl_strategy() logger.info("fl-ps > recved fl strategy: {}".format(strategy_dict)) # ......... to implement ...... # if strategy_dict['next_state'] == "JOIN": self.strategy_handlers['infer']() elif strategy_dict['next_state'] == "FINISH": self.strategy_handlers['finish']() def push_fl_client_info_sync(self, state_info): str_msg = self.__build_fl_client_info_desc(state_info) self._client_ptr.push_fl_client_info_sync(str_msg) return def pull_fl_strategy(self): strategy_dict = {} fl_strategy_str = ( self._client_ptr.pull_fl_strategy() ) # block: wait for coordinator's strategy arrived logger.info( "fl-ps > fl client recved fl_strategy(str):\n{}".format( fl_strategy_str ) ) fl_strategy_desc = the_one_ps_pb2.FLStrategy() text_format.Parse( bytes(fl_strategy_str, encoding="utf8"), fl_strategy_desc ) strategy_dict["next_state"] = fl_strategy_desc.next_state return strategy_dict def barrier(self): fleet.barrier_worker() def register_handlers(self, strategy_type, callback_func): self.strategy_handlers[strategy_type] = callback_func def register_default_handlers(self): self.register_handlers('train', self.callback_train) self.register_handlers('infer', self.callback_infer) self.register_handlers('finish', self.callback_finish) self.register_handlers( 'initialize_model_params', self.callback_initialize_model_params ) self.register_handlers('init_worker', self.callback_init_worker) self.register_handlers('save_model', self.callback_save_model) def callback_init_worker(self): fleet.init_worker() def callback_initialize_model_params(self): if self.exe is None or self.main_program is None: raise AssertionError("exe or main_program not set") self.exe.run(self.startup_program) def callback_train(self): epoch_start_time = time.time() self.set_dump_fields() fetch_info = [ "Epoch {} Var {}".format(self.epoch_idx, var_name) for var_name in self.metrics ] self.exe.train_from_dataset( program=self.main_program, dataset=self.train_dataset, fetch_list=self.fetch_vars, fetch_info=fetch_info, print_period=self.print_step, debug=self.debug, ) self.epoch_idx += 1 epoch_time = time.time() - epoch_start_time epoch_speed = self.train_example_nums / epoch_time self.train_statical_info["speed"].append(epoch_speed) logger.info("fl-ps > callback_train finished") def callback_infer(self): fetch_info = [ "Epoch {} Var {}".format(self.epoch_idx, var_name) for var_name in self.metrics ] self.exe.infer_from_dataset( program=self.main_program, dataset=self.test_dataset, fetch_list=self.fetch_vars, fetch_info=fetch_info, print_period=self.print_step, debug=self.debug, ) def callback_save_model(self): model_dir = "{}/{}".format(self.save_model_path, self.epoch_idx) if fleet.is_first_worker() and self.save_model_path: if is_distributed_env(): fleet.save_persistables(self.exe, model_dir) # save all params else: raise ValueError("it is not distributed env") def callback_finish(self): fleet.stop_worker() def print_program(self): with open( "./{}_worker_main_program.prototxt".format(self.worker_index), 'w+' ) as f: f.write(str(self.main_program)) with open( "./{}_worker_startup_program.prototxt".format(self.worker_index), 'w+', ) as f: f.write(str(self.startup_program)) def print_train_statical_info(self): with open("./train_statical_info.txt", 'w+') as f: f.write(str(self.train_statical_info)) class Coordinator: def __init__(self, ps_hosts): self._communicator = FLCommunicator(ps_hosts) self._client_selector = None def start_coordinator(self, self_endpoint, trainer_endpoints): self._communicator.start_coordinator(self_endpoint, trainer_endpoints) def make_fl_strategy(self): logger.info("fl-ps > running make_fl_strategy(loop) in coordinator\n") while True: # 1. get all fl clients reported info str_map = ( self._communicator.query_fl_clients_info() ) # block: wait for all fl clients info reported # 2. generate fl strategy self._client_selector = ClientSelector(str_map) fl_strategy = self._client_selector.select() # 3. save fl strategy from python to c++ self._communicator.save_fl_strategy(fl_strategy) time.sleep(5)