/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "NewRemoteParameterUpdater.h" #include "Trainer.h" #include "paddle/utils/Stat.h" DECLARE_int32(trainer_id); DECLARE_string(save_dir); namespace paddle { NewRemoteParameterUpdater::NewRemoteParameterUpdater( const OptimizationConfig &config, const std::string pserverSpec) : trainerConfig_(config), parameterClient_(-1), newParameters_(nullptr), newGradients_(nullptr), pserverSpec_(pserverSpec) {} NewRemoteParameterUpdater::NewRemoteParameterUpdater( const OptimizationConfig &config, const std::string pserverSpec, const bool useEtcd) : trainerConfig_(config), parameterClient_(-1), newParameters_(nullptr), newGradients_(nullptr), pserverSpec_(pserverSpec), useEtcd_(useEtcd) {} void NewRemoteParameterUpdater::init( const std::vector ¶meters) { ParameterUpdater::init(parameters); for (auto ¶ : parameters_) { para->getBuf(PARAMETER_VALUE)->zeroMem(); para->getBuf(PARAMETER_GRADIENT)->zeroMem(); } // create parameter server client. if (useEtcd_) { parameterClient_ = paddle_new_etcd_pserver_client((char *)pserverSpec_.c_str()); } else { parameterClient_ = paddle_new_pserver_client((char *)pserverSpec_.c_str(), FLAGS_trainer_id == 0); } // init new parameter and gradient. newParameters_ = initNewParameter(PARAMETER_VALUE); newGradients_ = initNewParameter(PARAMETER_GRADIENT); // init parameter, one trainer will get the opportunity to int parameter and // send them to parameter server. Others will get the initialized parameter // from parameter server if (paddle_begin_init_params(parameterClient_)) { LOG(INFO) << "paddle_begin_init_params start"; // NOTE: convert V1 OptimizatioinConfig proto to V2 OptimizerConfig. // This makes golang pserver compatible with handy V1 demos. // TODO: Refine or remove these ugly converting lines OptimizerConfig optimizerConfigV2; if (trainerConfig_.learning_method() == "momentum") { optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::SGD); } else if (trainerConfig_.learning_method() == "adagrad") { optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::Adagrad); optimizerConfigV2.mutable_adagrad()->set_epsilon( trainerConfig_.ada_epsilon()); } else if (trainerConfig_.learning_method() == "adadelta") { optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::Adagrad); optimizerConfigV2.mutable_adadelta()->set_epsilon( trainerConfig_.ada_epsilon()); optimizerConfigV2.mutable_adadelta()->set_rho(trainerConfig_.ada_rou()); } else if (trainerConfig_.learning_method() == "adam") { optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::Adam); optimizerConfigV2.mutable_adam()->set_beta_1(trainerConfig_.adam_beta1()); optimizerConfigV2.mutable_adam()->set_beta_2(trainerConfig_.adam_beta2()); optimizerConfigV2.mutable_adam()->set_epsilon( trainerConfig_.adam_epsilon()); } else { LOG(ERROR) << "got unsupported v1 optimizer config: " << trainerConfig_.learning_method(); optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::SGD); } if (trainerConfig_.learning_rate_schedule() == "constant") { optimizerConfigV2.set_lr_policy(paddle::OptimizerConfig::Const); optimizerConfigV2.mutable_const_lr()->set_learning_rate( trainerConfig_.learning_rate()); } else if (trainerConfig_.learning_rate_schedule() == "linear") { optimizerConfigV2.set_lr_policy(paddle::OptimizerConfig::Linear); optimizerConfigV2.mutable_linear_lr()->set_learning_rate( trainerConfig_.learning_rate()); optimizerConfigV2.mutable_linear_lr()->set_lr_decay_a( trainerConfig_.learning_rate_decay_a()); optimizerConfigV2.mutable_linear_lr()->set_lr_decay_b( trainerConfig_.learning_rate_decay_b()); } else { LOG(ERROR) << "got unsupported v1 learning_rate_schedule config: " << trainerConfig_.learning_rate_schedule() << ", set to const"; optimizerConfigV2.set_lr_policy(paddle::OptimizerConfig::Const); } // overwrite optimizerConfigV2 for per-parameter(layer) configs for (int i = 0; i < parameterSize(); ++i) { auto paramConfig = parameters_[i]->getConfig(); if (paramConfig.has_momentum() && trainerConfig_.learning_method() == "momentum") { optimizerConfigV2.mutable_sgd()->set_momentum(paramConfig.momentum()); } if (paramConfig.has_learning_rate()) { switch (optimizerConfigV2.lr_policy()) { case 0: optimizerConfigV2.mutable_const_lr()->set_learning_rate( paramConfig.learning_rate()); break; case 1: optimizerConfigV2.mutable_linear_lr()->set_learning_rate( paramConfig.learning_rate()); break; } } if (paramConfig.has_decay_rate()) { switch (optimizerConfigV2.optimizer()) { case 1: // SGD optimizerConfigV2.mutable_sgd()->set_decay( paramConfig.decay_rate()); break; case 2: // Adadelta optimizerConfigV2.mutable_adadelta()->set_decay( paramConfig.decay_rate()); break; case 3: // Adagrad optimizerConfigV2.mutable_adagrad()->set_decay( paramConfig.decay_rate()); break; case 4: // Adam optimizerConfigV2.mutable_adam()->set_decay( paramConfig.decay_rate()); break; } } // send param and config to pserver std::string bytes = optimizerConfigV2.SerializeAsString(); const char *array = bytes.data(); int size = (int)bytes.size(); paddle_init_param( parameterClient_, *newParameters_[i], (void *)array, size); } paddle_finish_init_params(parameterClient_); LOG(INFO) << "paddle_begin_init_params done"; } else { paddle_get_params(parameterClient_, newParameters_, parameterSize()); } LOG(INFO) << "NewRemoteParameterUpdater initialized"; } void NewRemoteParameterUpdater::updateImpl(Parameter *para) {} void NewRemoteParameterUpdater::finishBatch(real cost) { // send gradient to parameter server. paddle_send_grads(parameterClient_, newGradients_, parameterSize()); // get the updated parameter from parameterClient. paddle_get_params(parameterClient_, newParameters_, parameterSize()); // clear gradient after update parameter. for (auto ¶ : parameters_) { para->getBuf(PARAMETER_GRADIENT)->zeroMem(); } } void NewRemoteParameterUpdater::startPass() {} bool NewRemoteParameterUpdater::finishPass() { return true; } } // namespace paddle