# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import os import pickle import io import datetime from ..fluid.layer_helper import LayerHelper from ..fluid.framework import in_dygraph_mode from ..fluid.framework import _non_static_mode from ..fluid.data_feeder import check_variable_and_dtype from ..fluid.layers.tensor import fill_constant import paddle import paddle.fluid.core as core from paddle import _legacy_C_ops from .fleet.layers.mpu.mp_ops import split # noqa: F401 from .fleet.layers.mpu.mp_ops import _c_identity # noqa: F401 from .fleet.layers.mpu.mp_ops import _c_concat # noqa: F401 from .fleet.layers.mpu.mp_ops import _c_split # noqa: F401 from .fleet.layers.mpu.mp_ops import _mp_allreduce # noqa: F401 from .fleet.layers.mpu.mp_ops import _c_lookup_table # noqa: F401 from .fleet.layers.mpu.mp_ops import _Linear # noqa: F401 from .fleet.layers.mpu.mp_ops import _set_var_distributed # noqa: F401 from .fleet.layers.mpu.mp_ops import _c_softmax_with_cross_entropy # noqa: F401 from .fleet.layers.mpu.mp_ops import _linear # noqa: F401 from .fleet.layers.mpu.mp_ops import _parallel_linear # noqa: F401 from .fleet.layers.mpu.mp_ops import _parallel_embedding # noqa: F401 from .communication.group import Group, _add_new_group, is_initialized __all__ = [] _global_env = None def _get_global_env(): global _global_env if not _global_env: _global_env = paddle.distributed.ParallelEnv() return _global_env # group map : the map of all group, 0 for GlobalGroup # Dict[int, Group] _group_map = {} _global_env_gid = 0 # group map by name : the map of all groups from their names # Dict[name, Group] _group_map_by_name = {} # backend map by group : the map of all backend from their groups # Dict[group, backend] _group_map_backend = {} # Name of the default group for init_parallel_env _default_group_name = "_default_pg" _valid_backend_list = ['nccl', 'gloo', 'hccl', 'heter', 'xccl'] _default_store = None # the default tcp store _default_backend = None _default_timeout = datetime.timedelta(seconds=1800) _start_ring_id = 0 def _set_default_backend(backend): global _default_backend _default_backend = backend def _set_default_store(store): global _default_store _default_store = store def _get_group_map(): global _group_map if _global_env_gid not in _group_map: genv = _get_global_env() _group_map[_global_env_gid] = Group( genv.rank, 0, list(range(genv.world_size)) ) return _group_map def _get_global_group(): return _get_group_map()[_global_env_gid] def _get_group_map_by_name(): global _group_map_by_name return _group_map_by_name def _get_default_group(): global _group_map_by_name assert is_initialized(), ( "Call paddle.distributed.init_parallel_env first " "to initialize the distributed environment." ) return _get_group_map_by_name()[_default_group_name] def _set_group_map(gid, group): global _group_map assert gid not in _group_map _group_map[gid] = group def _set_group_map_by_name(name, group): global _group_map_by_name assert name not in _group_map_by_name _group_map_by_name[name] = group def _set_group_map_backend(group, backend): global _group_map_backend assert group not in _group_map_backend _group_map_backend[group] = backend def _new_ring_id(): # NOTE(liyurui): For compatible reason, auto parallel and eager mode relay on previous syntax. if in_dygraph_mode(): global _start_ring_id _start_ring_id += 1 return _start_ring_id + max(_get_global_env().nrings, 9) else: return len(_get_group_map()) + max(_get_global_env().nrings, 9) def _new_process_group_impl( backend, store, rank, world_size, group_name, pg_options, group_id=0, src_rank=None, dst_rank=None, ): pg = None genv = _get_global_env() if backend != 'heter': assert src_rank is None and dst_rank is None, ( "src_rank and dst_rank " "can only be set for heter backend." ) assert backend in _valid_backend_list, "Unsupported backend: %s." % backend if backend == "gloo": place = core.CPUPlace() pg = core.ProcessGroupGloo(store, rank, world_size, place, group_id) elif backend == "nccl": place = core.CUDAPlace(genv.device_id) pg = core.ProcessGroupNCCL(store, rank, world_size, place, group_id) elif backend == "hccl": place = core.NPUPlace(genv.device_id) pg = core.ProcessGroupHCCL(store, rank, world_size, place, group_id) elif backend == "xccl": place = core.CustomPlace(genv.device_type, genv.device_id) pg = core.ProcessGroupCustom(store, rank, world_size, place, group_id) elif backend == "heter": place = None if core.is_compiled_with_cuda(): place = core.CUDAPlace(genv.device_id) elif core.is_compiled_with_npu(): place = core.NPUPlace(genv.device_id) cluster_id = int(os.getenv("CLUSTER_ID", "-1")) assert cluster_id >= 0, "please set the CLUSTER_ID variable." cluster_size = os.getenv("CLUSTER_SIZE", None) assert cluster_size, "please set the CLUSTER_SIZE variable." cluster_size = cluster_size.split(",") cluster_size = [int(s) for s in cluster_size] switch_ep = os.getenv("CLUSTER_SWITCH", None) assert switch_ep, "please set the CLUSTER_SWITCH variable." cluster_size_cumsum = np.cumsum(cluster_size) cluster_offset = ( 0 if cluster_id == 0 else cluster_size_cumsum[cluster_id - 1] ) global_rank = cluster_offset + rank global_world_size = cluster_size_cumsum[-1] global_rank, global_world_size = _get_global_config(backend, rank) pg = core.ProcessGroupHeter( store, rank=global_rank, world_size=global_world_size, place=place, gid=group_id, local_rank=rank, local_size=world_size, gloo_rank=cluster_id, gloo_size=len(cluster_size), with_switch=True, switch_endpoint=switch_ep, src_rank=src_rank, dst_rank=dst_rank, ) return pg def barrier(group=None): """ Barrier among all participators in the group. Args: group (Group): The group instance return by new_group or None for global default group. Returns: None. Examples: .. code-block:: python import paddle from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() paddle.distributed.barrier() """ if group is not None and not group.is_member(): return if in_dygraph_mode(): group = _get_default_group() if group is None else group task = group.process_group.barrier() task.wait() return ring_id = 0 if group is None else group.id temp = fill_constant([1], dtype="int32", value="1") if _non_static_mode(): return _legacy_C_ops.barrier(temp, temp, 'ring_id', ring_id) op_type = 'barrier' if not isinstance(ring_id, int): raise ValueError("The type of 'group' for barrier must be int.") helper = LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'X': [temp]}, outputs={'Out': [temp]}, attrs={'ring_id': ring_id}, ) # _custom_gid provides a way for users to # set the group id, which is usually useful # to be compatible with the static mode. _custom_gid = None def _set_custom_gid(gid): global _custom_gid _custom_gid = gid def new_group(ranks=None, backend=None, timeout=_default_timeout): """ Creates a new distributed communication group. Args: ranks (list): The global ranks of group members. backend (str): The backend used to create group, only nccl is supported now. timeout (datetime.timedelta, optional): The waiting timeout for store relevant options, default is 30 minutes. Returns: Group: The group instance. Examples: .. code-block:: python import paddle paddle.distributed.init_parallel_env() tindata = paddle.randn(shape=[2, 3]) gp = paddle.distributed.new_group([2,4,6]) paddle.distributed.all_reduce(tindata, group=gp, sync_op=False) """ global _custom_gid global _group_map if in_dygraph_mode(): global _default_group_name gid = _custom_gid if _custom_gid else _new_ring_id() group_name = _default_group_name + str(gid) if backend != 'heter' and (ranks is None or len(ranks) > 1): global_group = _get_default_group() global_rank = global_group.rank global_ranks = global_group.ranks backend = _default_backend if backend is None else backend if ranks is None: ranks = global_ranks assert len(ranks) <= len(global_ranks), ( "Size of new group must be less than or " "equal to that of the default global group." ) size = len(ranks) ranks = sorted(ranks) if backend == 'heter' or (size > 1 and global_rank in ranks): rank = 0 if backend == 'heter' else ranks.index(global_rank) src_rank = ranks[0] if backend == 'heter' else None dst_rank = ranks[1] if backend == 'heter' else None pg = _new_process_group_impl( backend, _default_store, rank, size, group_name, pg_options=None, group_id=gid, src_rank=src_rank, dst_rank=dst_rank, ) else: rank = -1 pg = None group = Group(rank, gid, ranks, pg=pg, name=group_name) _group_map_by_name[group_name] = group _group_map[gid] = group _group_map_backend[group] = backend # TODO: The method below is a new method for group management, will replace the previous # three in the future. _add_new_group(group) # TODO(shenliang03): This is a temporary solution to solve the problem of # hang caused by tcp paddle.distributed.barrier(group=group) if paddle.distributed.get_world_size() > 1: paddle.distributed.barrier() return group if not backend: backend = 'nccl' assert backend == 'nccl', "backend other than nccl is not supported yet" genv = _get_global_env() global_rank = genv.rank ring_id = _new_ring_id() if global_rank not in ranks: gp = Group(-1, ring_id, ranks) _group_map[ring_id] = gp else: ranks = sorted(ranks) group_rank = ranks.index(global_rank) group_size = len(ranks) gp = Group(group_rank, ring_id, ranks) _group_map[ring_id] = gp if group_size >= 2: strategy = core.ParallelStrategy() strategy.nranks = group_size strategy.local_rank = group_rank strategy.trainer_endpoints = [ genv.trainer_endpoints[i] for i in ranks ] strategy.current_endpoint = genv.current_endpoint strategy.nrings = 1 if core.is_compiled_with_cuda(): place = core.CUDAPlace(genv.device_id) core.NCCLParallelContext(strategy, place).init_with_ring_id( ring_id ) elif core.is_compiled_with_npu(): place = core.NPUPlace(genv.device_id) core.HCCLParallelContext(strategy, place).init_with_ring_id( ring_id ) elif core.is_compiled_with_mlu(): place = core.MLUPlace(genv.device_id) core.CNCLParallelContext(strategy, place).init_with_ring_id( ring_id ) elif core.is_compiled_with_xpu(): place = core.XPUPlace(genv.device_id) core.BKCLParallelContext(strategy, place).init_with_ring_id( ring_id ) else: assert False, "no cuda device found" else: return gp # TODO(shenliang03): This is a temporary solution to solve the problem of # hang caused by cross-creation of new_group tmp = ( paddle.to_tensor([1], dtype="int32") if _non_static_mode() else fill_constant([0], dtype="int32", value="1") ) paddle.distributed.all_reduce(tmp, sync_op=True) paddle.distributed.wait(tmp) return gp def wait(tensor, group=None, use_calc_stream=True): """ wait to sync stream for group. Args: tensor (Tensor): The Tensor used before sync. group (Group): The Group instance to perform sync. use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False). Default to True. Returns: None. Examples: .. code-block:: python import paddle paddle.distributed.init_parallel_env() tindata = paddle.randn(shape=[2, 3]) paddle.distributed.all_reduce(tindata, sync_op=True) paddle.distributed.wait(tindata) """ if group is not None and not group.is_member(): return ring_id = 0 if group is None else group.id if use_calc_stream: _sync_calc_stream(tensor) else: _sync_comm_stream(tensor, ring_id) def _sync_calc_stream(tensor): if _non_static_mode(): return _legacy_C_ops.c_sync_calc_stream(tensor, tensor) op_type = 'c_sync_calc_stream' helper = LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'X': [tensor]}, outputs={'Out': [tensor]}, ) def _sync_comm_stream(tensor, ring_id=0): if _non_static_mode(): return _legacy_C_ops.c_sync_comm_stream( [tensor], [tensor], 'ring_id', ring_id ) op_type = 'c_sync_comm_stream' helper = LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'X': [tensor]}, outputs={'Out': [tensor]}, attrs={'ring_id': ring_id}, ) def all_gather(tensor_list, tensor, group=None, sync_op=True): """ Gather tensors from all participators and all get the result. As shown below, one process is started with a GPU and the data of this process is represented by its group rank. Through the all_gather operator, each GPU will have data from all GPUs. .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allgather.png :width: 800 :alt: all_gather :align: center Args: tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type should be float16, float32, float64, int32, int64, int8, uint8, bool, bfloat16, complex64 or complex128. tensor (Tensor): The Tensor to send. Its data type should be float16, float32, float64, int32, int64, int8, uint8, bool, complex64 or complex128. group (Group, optional): The group instance return by new_group or None for global default group. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: None. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() tensor_list = [] if dist.get_rank() == 0: data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]]) else: data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]]) dist.all_gather(tensor_list, data) print(tensor_list) # [[[4, 5, 6], [4, 5, 6]], [[1, 2, 3], [1, 2, 3]]] (2 GPUs) """ if group is not None and not group.is_member(): return def convert_to_complex(list_of_tensor): list_of_complex = [] for tensor in list_of_tensor: list_of_complex.append(paddle.as_complex(tensor)) return list_of_complex is_input_complex = ( tensor.dtype == paddle.complex64 or tensor.dtype == paddle.complex128 ) if is_input_complex: tensor = paddle.as_real(tensor) if in_dygraph_mode(): group = _get_default_group() if group is None else group if len(tensor_list) == 0: tensor_shape = list(tensor.shape) tensor_shape[0] *= group.nranks out = paddle.empty(tensor_shape, tensor.dtype) else: out = paddle.concat(tensor_list, axis=0) task = group.process_group.all_gather_into_tensor(out, tensor, sync_op) task.wait() tensor_list.clear() list_of_tensor = paddle.split(out, group.nranks, 0) if is_input_complex: tensor_list.extend(convert_to_complex(list_of_tensor)) else: tensor_list.extend(list_of_tensor) return use_calc_stream = sync_op ring_id = 0 if group is None else group.id nranks = _get_global_group().nranks if group is None else group.nranks if _non_static_mode(): out = _legacy_C_ops.c_allgather( tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id, 'nranks', nranks, ) else: op_type = 'c_allgather' helper = LayerHelper(op_type, **locals()) out = helper.create_variable_for_type_inference(dtype=tensor.dtype) if not isinstance(tensor_list, list): raise ValueError( "The type of 'tensor_list' for all_gather " "should be list." ) for elem in tensor_list: check_variable_and_dtype( elem, 'tensor_list', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'bool', 'int8', 'uint8', 'complex64', 'complex128', ], 'all_gather', ) check_variable_and_dtype( tensor, 'tensor', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'bool', 'int8', 'uint8', 'complex64', 'complex128', ], 'all_gather', ) helper.append_op( type=op_type, inputs={'X': [tensor]}, outputs={'Out': [out]}, attrs={ 'ring_id': ring_id, 'use_calc_stream': use_calc_stream, 'nranks': nranks, }, ) list_of_tensor = paddle.split(out, nranks, 0) if is_input_complex: tensor_list.extend(convert_to_complex(list_of_tensor)) else: tensor_list.extend(list_of_tensor) def _convert_object_to_tensor(obj): _pickler = pickle.Pickler f = io.BytesIO() _pickler(f).dump(obj) data = np.frombuffer(f.getvalue(), dtype=np.uint8) tensor = paddle.to_tensor(data) return tensor, tensor.numel() def _convert_tensor_to_object(tensor, len_of_tensor): _unpickler = pickle.Unpickler return _unpickler(io.BytesIO(tensor.numpy()[:len_of_tensor])).load() def all_gather_object(object_list, obj, group=None): """ Gather picklable objects from all participators and all get the result. Similiar to all_gather(), but python object can be passed in. Args: object_list (list): A list of output object. The datatype of every element in the list is same as the input obj. obj (Any): The picklable object to send. group (Group): The group instance return by new_group or None for global default group. Returns: None. Warning: This API only supports the dygraph mode. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() object_list = [] if dist.get_rank() == 0: obj = {"foo": [1, 2, 3]} else: obj = {"bar": [4, 5, 6]} dist.all_gather_object(object_list, obj) print(object_list) # [{'foo': [1, 2, 3]}, {'bar': [4, 5, 6]}] (2 GPUs) """ assert ( in_dygraph_mode() ), "all_gather_object doesn't support static graph mode." tensor, len_of_tensor = _convert_object_to_tensor(obj) # gather len_of_tensor from all ranks list_len_of_tensor = [] all_gather(list_len_of_tensor, len_of_tensor, group) # get the max length from list max_len_of_tensor = int(max(list_len_of_tensor).item()) # resize the input tensor to max length avoid hang in all gather # Note(liyurui): Maybe we should support various length all_gather? # Now this operation is efficient for we don't support resize in python. numpy_data = tensor.numpy() numpy_data = np.resize(numpy_data, [max_len_of_tensor]) input_tensor = paddle.to_tensor(numpy_data) tensor_list = [] all_gather(tensor_list, input_tensor, group) for i, tensor in enumerate(tensor_list): object_list.append( _convert_tensor_to_object(tensor, list_len_of_tensor[i]) )