# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import os import numpy as np import tempfile import shutil import cv2 import paddle.vision.transforms as T from paddle.vision.datasets import * from paddle.dataset.common import _check_exists_and_download class TestFolderDatasets(unittest.TestCase): def setUp(self): self.data_dir = tempfile.mkdtemp() self.empty_dir = tempfile.mkdtemp() for i in range(2): sub_dir = os.path.join(self.data_dir, 'class_' + str(i)) if not os.path.exists(sub_dir): os.makedirs(sub_dir) for j in range(2): fake_img = (np.random.random((32, 32, 3)) * 255).astype('uint8') cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img) def tearDown(self): shutil.rmtree(self.data_dir) def test_dataset(self): dataset_folder = DatasetFolder(self.data_dir) for _ in dataset_folder: pass assert len(dataset_folder) == 4 assert len(dataset_folder.classes) == 2 dataset_folder = DatasetFolder(self.data_dir) for _ in dataset_folder: pass def test_folder(self): loader = ImageFolder(self.data_dir) for _ in loader: pass loader = ImageFolder(self.data_dir) for _ in loader: pass assert len(loader) == 4 def test_transform(self): def fake_transform(img): return img transfrom = fake_transform dataset_folder = DatasetFolder(self.data_dir, transform=transfrom) for _ in dataset_folder: pass loader = ImageFolder(self.data_dir, transform=transfrom) for _ in loader: pass def test_errors(self): with self.assertRaises(RuntimeError): ImageFolder(self.empty_dir) with self.assertRaises(RuntimeError): DatasetFolder(self.empty_dir) with self.assertRaises(ValueError): _check_exists_and_download('temp_paddle', None, None, None, False) class TestMNISTTest(unittest.TestCase): def test_main(self): transform = T.Transpose() mnist = MNIST(mode='test', transform=transform) self.assertTrue(len(mnist) == 10000) i = np.random.randint(0, len(mnist) - 1) image, label = mnist[i] self.assertTrue(image.shape[0] == 1) self.assertTrue(image.shape[1] == 28) self.assertTrue(image.shape[2] == 28) self.assertTrue(label.shape[0] == 1) self.assertTrue(0 <= int(label) <= 9) class TestMNISTTrain(unittest.TestCase): def test_main(self): transform = T.Transpose() mnist = MNIST(mode='train', transform=transform) self.assertTrue(len(mnist) == 60000) i = np.random.randint(0, len(mnist) - 1) image, label = mnist[i] self.assertTrue(image.shape[0] == 1) self.assertTrue(image.shape[1] == 28) self.assertTrue(image.shape[2] == 28) self.assertTrue(label.shape[0] == 1) self.assertTrue(0 <= int(label) <= 9) # test cv2 backend mnist = MNIST(mode='train', transform=transform, backend='cv2') self.assertTrue(len(mnist) == 60000) for i in range(len(mnist)): image, label = mnist[i] self.assertTrue(image.shape[0] == 1) self.assertTrue(image.shape[1] == 28) self.assertTrue(image.shape[2] == 28) self.assertTrue(label.shape[0] == 1) self.assertTrue(0 <= int(label) <= 9) break with self.assertRaises(ValueError): mnist = MNIST(mode='train', transform=transform, backend=1) class TestFASHIONMNISTTest(unittest.TestCase): def test_main(self): transform = T.Transpose() mnist = FashionMNIST(mode='test', transform=transform) self.assertTrue(len(mnist) == 10000) i = np.random.randint(0, len(mnist) - 1) image, label = mnist[i] self.assertTrue(image.shape[0] == 1) self.assertTrue(image.shape[1] == 28) self.assertTrue(image.shape[2] == 28) self.assertTrue(label.shape[0] == 1) self.assertTrue(0 <= int(label) <= 9) class TestFASHIONMNISTTrain(unittest.TestCase): def test_main(self): transform = T.Transpose() mnist = FashionMNIST(mode='train', transform=transform) self.assertTrue(len(mnist) == 60000) i = np.random.randint(0, len(mnist) - 1) image, label = mnist[i] self.assertTrue(image.shape[0] == 1) self.assertTrue(image.shape[1] == 28) self.assertTrue(image.shape[2] == 28) self.assertTrue(label.shape[0] == 1) self.assertTrue(0 <= int(label) <= 9) # test cv2 backend mnist = FashionMNIST(mode='train', transform=transform, backend='cv2') self.assertTrue(len(mnist) == 60000) for i in range(len(mnist)): image, label = mnist[i] self.assertTrue(image.shape[0] == 1) self.assertTrue(image.shape[1] == 28) self.assertTrue(image.shape[2] == 28) self.assertTrue(label.shape[0] == 1) self.assertTrue(0 <= int(label) <= 9) break with self.assertRaises(ValueError): mnist = FashionMNIST(mode='train', transform=transform, backend=1) def test_dataset_value(self): fmnist = FashionMNIST(mode='train') value = np.mean([np.array(x[0]) for x in fmnist]) # 72.94035223214286 was getted from competitive products np.testing.assert_allclose(value, 72.94035223214286) class TestFlowersTrain(unittest.TestCase): def test_main(self): flowers = Flowers(mode='train') self.assertTrue(len(flowers) == 6149) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 6149) image, label = flowers[idx] image = np.array(image) self.assertTrue(len(image.shape) == 3) self.assertTrue(image.shape[2] == 3) self.assertTrue(label.shape[0] == 1) class TestFlowersValid(unittest.TestCase): def test_main(self): flowers = Flowers(mode='valid') self.assertTrue(len(flowers) == 1020) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 1020) image, label = flowers[idx] image = np.array(image) self.assertTrue(len(image.shape) == 3) self.assertTrue(image.shape[2] == 3) self.assertTrue(label.shape[0] == 1) class TestFlowersTest(unittest.TestCase): def test_main(self): flowers = Flowers(mode='test') self.assertTrue(len(flowers) == 1020) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 1020) image, label = flowers[idx] image = np.array(image) self.assertTrue(len(image.shape) == 3) self.assertTrue(image.shape[2] == 3) self.assertTrue(label.shape[0] == 1) # test cv2 backend flowers = Flowers(mode='test', backend='cv2') self.assertTrue(len(flowers) == 1020) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 1020) image, label = flowers[idx] self.assertTrue(len(image.shape) == 3) self.assertTrue(image.shape[2] == 3) self.assertTrue(label.shape[0] == 1) with self.assertRaises(ValueError): flowers = Flowers(mode='test', backend=1) if __name__ == '__main__': unittest.main()