# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import sys import numpy as np from .... import Executor from .... import io from .... import core, scope_guard from ....compiler import CompiledProgram from ....compiler import BuildStrategy from ....framework import IrGraph, Variable, Program from ....log_helper import get_logger from ..core.strategy import Strategy from .quantization_pass import * __all__ = ['QuantizationStrategy'] _logger = get_logger( __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') class QuantizationStrategy(Strategy): """ The strategy for Quantization. """ def __init__(self, start_epoch=0, end_epoch=0, float_model_save_path=None, mobile_model_save_path=None, int8_model_save_path=None, activation_bits=8, weight_bits=8, activation_quantize_type='abs_max', weight_quantize_type='abs_max', save_in_nodes=None, save_out_nodes=None): """ Args: start_epoch(int): The 'on_epoch_begin' function will be called in start_epoch. default: 0 end_epoch(int): The 'on_epoch_end' function will be called in end_epoch. default: 0 float_model_save_path(str): The path to save model with float weights. None means it doesn't save float model. default: None. mobile_model_save_path(str): The path to save model for paddle-mobile execution. None means it doesn't save mobile model. default: None. int8_model_save_path(str): The path to save model with int8_t weight. None means it doesn't save int8 model. default: None. activation_bits(int): quantization bit number for activation. default: 8. weight_bits(int): quantization bit number for weights. The bias is not quantized. default: 8. activation_quantize_type(str): quantization type for activation, now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'. If use 'abs_max' mode, the quantization scale will be calculated dynamically each step in both training and testing period. If use 'range_abs_max', a static quantization scale will be calculated during training and used in inference. weight_quantize_type (str): quantization type for weights, support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, since weights are fixed once the model is well trained. save_in_nodes(list): A list of variable names used to prune graph for saving inference model. save_out_nodes(list): A list of variable names used to prune graph for saving inference model. """ super(QuantizationStrategy, self).__init__(start_epoch, end_epoch) self.start_epoch = start_epoch self.end_epoch = end_epoch self.float_model_save_path = float_model_save_path self.mobile_model_save_path = mobile_model_save_path self.int8_model_save_path = int8_model_save_path self.activation_bits = activation_bits self.weight_bits = weight_bits self.activation_quantize_type = activation_quantize_type self.weight_quantize_type = weight_quantize_type self.save_out_nodes = save_out_nodes self.save_in_nodes = save_in_nodes def restore_from_checkpoint(self, context): """ Restore graph when the compression task is inited from checkpoint. """ # It is inited from checkpoint and has missed start epoch. if context.epoch_id != 0 and context.epoch_id > self.start_epoch: _logger.info("Restore quantization task from checkpoint") self._modify_graph_for_quantization(context) _logger.info("Finish restoring quantization task from checkpoint") def _modify_graph_for_quantization(self, context): """ Insert fake_quantize_op and fake_dequantize_op before training and testing. """ train_ir_graph = IrGraph( core.Graph(context.optimize_graph.program.clone().desc), for_test=False) test_ir_graph = IrGraph( core.Graph(context.eval_graph.program.clone().desc), for_test=True) transform_pass = QuantizationTransformPass( scope=context.scope, place=context.place, weight_bits=self.weight_bits, activation_bits=self.activation_bits, activation_quantize_type=self.activation_quantize_type, weight_quantize_type=self.weight_quantize_type) transform_pass.apply(train_ir_graph) transform_pass.apply(test_ir_graph) # Put persistables created by transform_pass into context.optimize_graph.persistables # for saving checkpoint. program_persistables = set() for var in context.optimize_graph.program.list_vars(): if var.persistable: program_persistables.add(var.name) program = Program() for var_node in train_ir_graph.all_persistable_nodes(): if var_node.name() not in program_persistables: var_desc = var_node.var() var = program.global_block().create_var( name=var_node.name(), shape=var_desc.shape(), dtype=var_desc.dtype(), type=var_desc.type(), lod_level=var_desc.lod_level()) context.optimize_graph.persistables[var.name] = var build_strategy = BuildStrategy() build_strategy.enable_inplace = False build_strategy.memory_optimize = False build_strategy.fuse_all_reduce_ops = False # for quantization training context.optimize_graph.compiled_graph = CompiledProgram( train_ir_graph.graph).with_data_parallel( loss_name=context.optimize_graph.out_nodes['loss'], build_strategy=build_strategy) context.eval_graph.program = test_ir_graph.to_program() # for saving inference model after training context.put('quantization_test_ir_graph_backup', test_ir_graph) def on_epoch_begin(self, context): """ Insert fake_quantize_op and fake_dequantize_op before training and testing. """ super(QuantizationStrategy, self).on_epoch_begin(context) if self.start_epoch == context.epoch_id: _logger.info('QuantizationStrategy::on_epoch_begin') self._modify_graph_for_quantization(context) _logger.info('Finish QuantizationStrategy::on_epoch_begin') def on_epoch_end(self, context): """ Free and save inference model. """ super(QuantizationStrategy, self).on_compression_end(context) if context.epoch_id == self.end_epoch: _logger.info('QuantizationStrategy::on_epoch_end') test_ir_graph = context.get('quantization_test_ir_graph_backup') # freeze the graph after training freeze_pass = QuantizationFreezePass( scope=context.scope, place=context.place, weight_bits=self.weight_bits, activation_bits=self.activation_bits, weight_quantize_type=self.weight_quantize_type) freeze_pass.apply(test_ir_graph) # for other strategies context.eval_graph.program = test_ir_graph.to_program() if self.save_out_nodes == None: out_vars = [ context.eval_graph.var(var_name)._var for var_name in context.eval_graph.out_nodes.values() ] else: out_vars = [ context.eval_graph.var(var_name)._var for var_name in self.save_out_nodes ] if self.save_in_nodes == None: in_vars = list(context.eval_graph.in_nodes.values()) else: in_vars = self.save_in_nodes # save float model if self.float_model_save_path: executor = Executor(context.place) with scope_guard(context.scope): io.save_inference_model( self.float_model_save_path, in_vars, out_vars, executor, main_program=test_ir_graph.to_program(), model_filename='model', params_filename='weights', export_for_deployment=True) # save int8 model if self.int8_model_save_path: convert_int8_pass = ConvertToInt8Pass( scope=context.scope, place=context.place) convert_int8_pass.apply(test_ir_graph) executor = Executor(context.place) with scope_guard(context.scope): io.save_inference_model( self.int8_model_save_path, in_vars, out_vars, executor, main_program=test_ir_graph.to_program(), model_filename='model', params_filename='weights', export_for_deployment=True) # save mobile model if self.mobile_model_save_path: if not self.int8_model_save_path: # convert the weights as int8_t type convert_int8_pass = ConvertToInt8Pass( scope=context.scope, place=context.place) convert_int8_pass.apply(test_ir_graph) # make some changes on the graph for the mobile inference mobile_pass = TransformForMobilePass() mobile_pass.apply(test_ir_graph) executor = Executor(context.place) with scope_guard(context.scope): io.save_inference_model( self.mobile_model_save_path, in_vars, out_vars, executor, main_program=test_ir_graph.to_program(), model_filename='model', params_filename='weights', export_for_deployment=True) _logger.info('Finish QuantizationStrategy::on_epoch_end')