#!/usr/bin/env python from paddle.trainer_config_helpers import * height = 227 width = 227 num_class = 1000 batch_size = get_config_arg('batch_size', int, 128) use_mkldnn = get_config_arg('use_mkldnn', bool, False) is_infer = get_config_arg("is_infer", bool, False) num_samples = get_config_arg('num_samples', int, 2560) args = { 'height': height, 'width': width, 'color': True, 'num_class': num_class, 'is_infer': is_infer, 'num_samples': num_samples } define_py_data_sources2( "train.list", None, module="provider", obj="process", args=args) settings( batch_size=batch_size, learning_rate=0.01 / batch_size, learning_method=MomentumOptimizer(0.9), regularization=L2Regularization(0.0005 * batch_size)) # conv1 net = data_layer('data', size=height * width * 3) net = img_conv_layer( input=net, filter_size=11, num_channels=3, num_filters=96, stride=4, padding=1) net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75) net = img_pool_layer(input=net, pool_size=3, stride=2) # conv2 net = img_conv_layer( input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=2 if use_mkldnn else 1) net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75) net = img_pool_layer(input=net, pool_size=3, stride=2) # conv3 net = img_conv_layer( input=net, filter_size=3, num_filters=384, stride=1, padding=1) # conv4 net = img_conv_layer( input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=2 if use_mkldnn else 1) # conv5 net = img_conv_layer( input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=2 if use_mkldnn else 1) net = img_pool_layer(input=net, pool_size=3, stride=2) net = fc_layer( input=net, size=4096, act=ReluActivation(), layer_attr=ExtraAttr(drop_rate=0.5)) net = fc_layer( input=net, size=4096, act=ReluActivation(), layer_attr=ExtraAttr(drop_rate=0.5)) net = fc_layer(input=net, size=1000, act=SoftmaxActivation()) lab = data_layer('label', num_class) loss = cross_entropy(input=net, label=lab) outputs(loss)