# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import unittest import numpy as np from eager_op_test import OpTest import paddle import paddle.fluid.core as core from paddle.fluid.op import Operator def adamgrad_wrapper(param, grad, moment, learning_rate, epsilon): paddle._C_ops.adagrad_(param, grad, moment, learning_rate, epsilon) class TestAdagradOp1(OpTest): '''Test Adagrad operator with explicit attributes''' def setUp(self): self.op_type = "adagrad" self.python_api = adamgrad_wrapper self.python_out_sig = ['out'] param = np.random.random((123, 321)).astype("float32") grad = np.random.random((123, 321)).astype("float32") moment = np.zeros((123, 321)).astype("float32") lr = 0.01 epsilon = 1e-8 self.inputs = { 'Param': param, 'Grad': grad, 'Moment': moment, 'LearningRate': np.array([lr]).astype("float32"), } self.attrs = {'epsilon': epsilon} moment_out = moment + grad * grad param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon) self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out} def test_check_output(self): self.check_output() class TestAdagradOp2(OpTest): '''Test Adagrad operator with default attributes''' def setUp(self): self.op_type = "adagrad" self.python_api = adamgrad_wrapper self.python_out_sig = ['out'] param = np.random.random((123, 321)).astype("float32") grad = np.random.random((123, 321)).astype("float32") moment = np.zeros((123, 321)).astype("float32") lr = 0.01 epsilon = 1e-6 self.inputs = { 'Param': param, 'Grad': grad, 'Moment': moment, 'LearningRate': np.array([lr]).astype("float32"), } self.attrs = {'epsilon': epsilon} moment_out = moment + grad * grad param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon) self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out} def test_check_output(self): self.check_output() class TestSparseAdagradOp(unittest.TestCase): def check_with_place(self, place): scope = core.Scope() # create and initialize Grad Variable height = 10 rows = [0, 4, 7, 4] row_numel = 12 grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(height) grad_selected_rows.set_rows(rows) np_array = np.ones((len(rows), row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 8] = 4.0 grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(np_array, place) # create and initialize Param Variable param = scope.var('Param').get_tensor() param_array = np.full((height, row_numel), 5.0).astype("float32") param.set(param_array, place) # create and initialize LeraningRate Variable lr = scope.var('LearningRate').get_tensor() lr_array = np.full((1), 2.0).astype("float32") lr.set(lr_array, place) # create and initialize moment Variable moment = scope.var('Moment').get_tensor() moment_np_array = np.full((height, row_numel), 2.0).astype("float32") moment.set(moment_np_array, place) # create and run sgd operator adagrad_op = Operator( "adagrad", Param='Param', Grad='Grad', ParamOut='Param', Moment='Moment', MomentOut='Moment', LearningRate='LearningRate', epsilon=2.0, ) adagrad_op.run(scope, place) # get and compare moment result moment_result_array = np.array(moment) self.assertAlmostEqual(6.0, moment_result_array[rows[0], 0]) self.assertAlmostEqual(3.0, moment_result_array[rows[0], 2]) self.assertAlmostEqual(2.0, moment_result_array[1, 0]) # 2.0 + (1.0 + 1.0)^2 self.assertAlmostEqual(6.0, moment_result_array[rows[1], 10]) self.assertAlmostEqual(6.0, moment_result_array[rows[3], 4]) self.assertAlmostEqual(2.0, moment_result_array[5, 8]) self.assertAlmostEqual(3.0, moment_result_array[rows[2], 1]) self.assertAlmostEqual(18.0, moment_result_array[rows[2], 8]) # get and compare param result result_array = np.array(param) def get_out(param, lr, grad, m, epsilon): return param - lr * grad / (math.sqrt(m) + epsilon) self.assertAlmostEqual( get_out(5.0, 2.0, 2.0, 6.0, 2.0), result_array[rows[0], 0], places=5 ) self.assertAlmostEqual( get_out(5.0, 2.0, 1.0, 3.0, 2.0), result_array[rows[0], 2], places=5 ) self.assertAlmostEqual( get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[1, 0], places=5 ) # grad_merge = 1.0 + 1.0 # m = 6.0 self.assertAlmostEqual( get_out(5.0, 2.0, 2.0, 6.0, 2.0), result_array[rows[1], 10], places=5, ) self.assertAlmostEqual( get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[5, 8], places=5 ) self.assertAlmostEqual( get_out(5.0, 2.0, 1.0, 3.0, 2.0), result_array[rows[2], 1], places=5 ) self.assertAlmostEqual( get_out(5.0, 2.0, 4.0, 18.0, 2.0), result_array[rows[2], 8], places=5, ) def test_sparse_adagrad(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for place in places: self.check_with_place(place) if __name__ == "__main__": paddle.enable_static() unittest.main()