PyDataProvider2的使用

PyDataProvider2是PaddlePaddle使用Python提供数据的推荐接口。该接口使用多线程读取数据,并提供了简单的Cache功能;同时可以使用户只关注如何从文件中读取每一条数据,而不用关心数据如何传输,如何存储等等。

MNIST的使用场景

我们以MNIST手写识别为例,来说明PyDataProvider2的简单使用场景。

样例数据

MNIST是一个包含有70,000张灰度图片的数字分类数据集。样例数据 mnist_train.txt 如下:

5;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.215686 0.533333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67451 0.992157 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.070588 0.886275 0.992157 0 0 0 0 0 0 0 0 0 0 0.192157 0.070588 0 0 0 0 0 0 0 0 0 0 0 0 0 0.670588 0.992157 0.992157 0 0 0 0 0 0 0 0 0 0.117647 0.933333 0.858824 0.313725 0 0 0 0 0 0 0 0 0 0 0 0.090196 0.858824 0.992157 0.831373 0 0 0 0 0 0 0 0 0 0.141176 0.992157 0.992157 0.611765 0.054902 0 0 0 0 0 0 0 0 0 0 0.258824 0.992157 0.992157 0.529412 0 0 0 0 0 0 0 0 0 0.368627 0.992157 0.992157 0.419608 0.003922 0 0 0 0 0 0 0 0 0 0.094118 0.835294 0.992157 0.992157 0.517647 0 0 0 0 0 0 0 0 0 0.603922 0.992157 0.992157 0.992157 0.603922 0.545098 0.043137 0 0 0 0 0 0 0 0.447059 0.992157 0.992157 0.956863 0.062745 0 0 0 0 0 0 0 0 0.011765 0.666667 0.992157 0.992157 0.992157 0.992157 0.992157 0.745098 0.137255 0 0 0 0 0 0.152941 0.866667 0.992157 0.992157 0.521569 0 0 0 0 0 0 0 0 0 0.070588 0.992157 0.992157 0.992157 0.803922 0.352941 0.745098 0.992157 0.945098 0.317647 0 0 0 0 0.580392 0.992157 0.992157 0.764706 0.043137 0 0 0 0 0 0 0 0 0 0.070588 0.992157 0.992157 0.776471 0.043137 0 0.007843 0.27451 0.882353 0.941176 0.176471 0 0 0.180392 0.898039 0.992157 0.992157 0.313725 0 0 0 0 0 0 0 0 0 0 0.070588 0.992157 0.992157 0.713725 0 0 0 0 0.627451 0.992157 0.729412 0.062745 0 0.509804 0.992157 0.992157 0.776471 0.035294 0 0 0 0 0 0 0 0 0 0 0.494118 0.992157 0.992157 0.968627 0.168627 0 0 0 0.423529 0.992157 0.992157 0.364706 0 0.717647 0.992157 0.992157 0.317647 0 0 0 0 0 0 0 0 0 0 0 0.533333 0.992157 0.984314 0.945098 0.603922 0 0 0 0.003922 0.466667 0.992157 0.988235 0.976471 0.992157 0.992157 0.788235 0.007843 0 0 0 0 0 0 0 0 0 0 0 0.686275 0.882353 0.364706 0 0 0 0 0 0 0.098039 0.588235 0.992157 0.992157 0.992157 0.980392 0.305882 0 0 0 0 0 0 0 0 0 0 0 0 0.101961 0.67451 0.321569 0 0 0 0 0 0 0 0.105882 0.733333 0.976471 0.811765 0.713725 0 0 0 0 0 0 0 0 0 0 0 0 0 0.65098 0.992157 0.321569 0 0 0 0 0 0 0 0 0 0.25098 0.007843 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.94902 0.219608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.968627 0.764706 0.152941 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.498039 0.25098 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.298039 0.333333 0.333333 0.333333 0.337255 0.333333 0.333333 0.109804 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.027451 0.223529 0.776471 0.964706 0.988235 0.988235 0.988235 0.992157 0.988235 0.988235 0.780392 0.098039 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.14902 0.698039 0.988235 0.992157 0.988235 0.901961 0.87451 0.568627 0.882353 0.976471 0.988235 0.988235 0.501961 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.188235 0.647059 0.988235 0.988235 0.745098 0.439216 0.098039 0 0 0 0.572549 0.988235 0.988235 0.988235 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.933333 0.992157 0.941176 0.247059 0 0 0 0 0 0 0.188235 0.898039 0.992157 0.992157 0 0 0 0 0 0 0 0 0 0 0 0.039216 0.639216 0.933333 0.988235 0.913725 0.278431 0 0 0 0 0 0 0 0.113725 0.843137 0.988235 0.988235 0 0 0 0 0 0 0 0 0 0 0 0.235294 0.988235 0.992157 0.988235 0.815686 0.07451 0 0 0 0 0 0 0 0.333333 0.988235 0.988235 0.552941 0 0 0 0 0 0 0 0 0 0 0.211765 0.878431 0.988235 0.992157 0.701961 0.329412 0.109804 0 0 0 0 0 0 0 0.698039 0.988235 0.913725 0.145098 0 0 0 0 0 0 0 0 0 0.188235 0.890196 0.988235 0.988235 0.745098 0.047059 0 0 0 0 0 0 0 0 0 0.882353 0.988235 0.568627 0 0 0 0 0 0 0 0 0 0.2 0.933333 0.992157 0.992157 0.992157 0.447059 0.294118 0 0 0 0 0 0 0 0 0.447059 0.992157 0.768627 0 0 0 0 0 0 0 0 0 0 0.623529 0.988235 0.988235 0.988235 0.988235 0.992157 0.47451 0 0 0 0 0 0 0 0.188235 0.933333 0.87451 0.509804 0 0 0 0 0 0 0 0 0 0 0.992157 0.988235 0.937255 0.792157 0.988235 0.894118 0.082353 0 0 0 0 0 0 0.027451 0.647059 0.992157 0.654902 0 0 0 0 0 0 0 0 0 0 0 0.623529 0.988235 0.913725 0.329412 0.376471 0.184314 0 0 0 0 0 0 0.027451 0.513725 0.988235 0.635294 0.219608 0 0 0 0 0 0 0 0 0 0 0 0.196078 0.929412 0.988235 0.988235 0.741176 0.309804 0 0 0 0 0 0 0.529412 0.988235 0.678431 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.223529 0.992157 0.992157 1 0.992157 0.992157 0.992157 0.992157 1 0.992157 0.992157 0.882353 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.023529 0.478431 0.654902 0.658824 0.952941 0.988235 0.988235 0.988235 0.992157 0.988235 0.729412 0.278431 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.196078 0.647059 0.764706 0.764706 0.768627 0.580392 0.047059 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
4;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.180392 0.470588 0.623529 0.623529 0.623529 0.588235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.243137 0.494118 0.862745 0.870588 0.960784 0.996078 0.996078 0.996078 0.996078 0.992157 0.466667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.317647 0.639216 0.639216 0.639216 0.639216 0.639216 0.470588 0.262745 0.333333 0.929412 0.694118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.811765 0.694118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.811765 0.694118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.811765 0.694118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.184314 0.992157 0.694118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.192157 0.996078 0.384314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.454902 0.980392 0.219608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.564706 0.941176 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.588235 0.776471 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.945098 0.560784 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.054902 0.952941 0.356863 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.337255 0.917647 0.109804 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.698039 0.701961 0.019608 0.4 0.662745 0.662745 0.662745 0.662745 0.662745 0.662745 0.662745 0.376471 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.090196 0.639216 0.972549 0.945098 0.913725 0.996078 0.996078 0.996078 0.996078 1 0.996078 0.996078 1 0.996078 0 0 0 0 0 0 0 0 0 0 0.007843 0.105882 0.717647 0.776471 0.905882 0.996078 0.996078 0.988235 0.980392 0.862745 0.537255 0.223529 0.223529 0.368627 0.376471 0.6 0.6 0.6 0 0 0 0 0 0 0 0 0.262745 0.470588 0.6 0.996078 0.996078 0.996078 0.996078 0.847059 0.356863 0.156863 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.909804 0.705882 0.823529 0.635294 0.490196 0.219608 0.113725 0.062745 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.152941 0.152941 0.156863 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

其中每行数据代表一张图片,行内使用 ; 分成两部分。第一部分是图片的标签,为0-9中的一个数字;第二部分是28*28的图片像素灰度值。 对应的 train.list 即为这个数据文件的名字:

mnist_train.txt

dataprovider的使用

#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from paddle.trainer.PyDataProvider2 import *


# Define a py data provider
@provider(
    input_types={'pixel': dense_vector(28 * 28),
                 'label': integer_value(10)})
def process(settings, filename):  # settings is not used currently.
    f = open(filename, 'r')  # open one of training file

    for line in f:  # read each line
        label, pixel = line.split(';')

        # get features and label
        pixels_str = pixel.split(' ')

        pixels_float = []
        for each_pixel_str in pixels_str:
            pixels_float.append(float(each_pixel_str))

        # give data to paddle.
        yield {"pixel": pixels_float, 'label': int(label)}

    f.close()  # close file
  • 首先,引入PaddlePaddle的PyDataProvider2包。

  • 其次,定义一个Python的 Decorator @provider 。用于将下一行的数据输入函数标记成一个PyDataProvider2,同时设置它的input_types属性。

    • input_types:设置这个PyDataProvider2返回什么样的数据。本例根据网络配置中 data_layer 的名字,显式指定返回的是一个28*28维的稠密浮点数向量和一个[0-9]的10维整数标签。

      #Unless required by applicable law or agreed to in writing, software
      #distributed under the License is distributed on an "AS IS" BASIS,
      
    • 注意:如果用户不显示指定返回数据的对应关系,那么PaddlePaddle会根据layer的声明顺序,来确定对应关系。但这个关系可能不正确,所以推荐使用显式指定的方式来设置input_types。

  • 最后,实现数据输入函数(如本例的 process 函数)。

    • 该函数的功能是:打开文本文件,读取每一行,将行中的数据转换成与input_types一致的格式,然后返回给PaddlePaddle进程。注意,
      • 返回的顺序需要和input_types中定义的顺序一致。
      • 返回时,必须使用Python关键词 yield ,相关概念是 generator
      • 一次yield调用,返回一条完整的样本。如果想为一个数据文件返回多条样本,只需要在函数中调用多次yield即可(本例中使用for循环进行多次调用)。
    • 该函数具有两个参数:
      • settings:在本例中没有使用,具体可以参考 init_hook 中的说明。
      • filename:为 train.listtest.list 中的一行,即若干数据文件路径的某一个。

网络配置中的调用

在网络配置里,只需要一行代码就可以调用这个PyDataProvider2,如,

#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0

训练数据是 train.list ,没有测试数据,调用的PyDataProvider2是 mnist_provider 模块中的 process 函数。

小结

至此,简单的PyDataProvider2样例就说明完毕了。对用户来说,仅需要知道如何从 一个文件 中读取 一条样本 ,就可以将数据传送给PaddlePaddle了。而PaddlePaddle则会帮用户做以下工作:

  • 将数据组合成Batch进行训练
  • 对训练数据进行Shuffle
  • 多线程的数据读取
  • 缓存训练数据到内存(可选)
  • CPU->GPU双缓存

是不是很简单呢?

时序模型的使用场景

样例数据

时序模型是指数据的某一维度是一个序列形式,即包含时间步信息。所谓时间步信息,不一定和时间有关系,只是说明数据的顺序是重要的。例如,文本信息就是一个序列数据。

本例采用英文情感分类的数据,即将一段英文文本数据,分类成正面情绪和负面情绪两类(用0和1表示)。样例数据 sentimental_train.txt 如下:

0       I saw this movie at the AFI Dallas festival . It all takes place at a lake house and it looks wonderful .
1       This documentary makes you travel all around the globe . It contains rare and stunning sequels from the wilderness .
...

dataprovider的使用

相对MNIST而言,这个dataprovider较复杂,主要原因是增加了初始化机制 init_hook。本例的 on_init 函数就是根据该机制配置的,它会在dataprovider创建的时候执行。

  • 其中 input_types 和在 @provider 中配置的效果一致。本例中的输入特征是词ID的序列,因此使用 integer_value_sequence 类型来设置。
  • dictionary 存入settings对象,在 process 函数中使用。 dictionary是从网络配置中传入的dict对象,即一个将单词字符串映射到单词ID的字典。
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from paddle.trainer.PyDataProvider2 import *


def on_init(settings, dictionary, **kwargs):
    # on_init will invoke when data provider is initialized. The dictionary
    # is passed from trainer_config, and is a dict object with type
    # (word string => word id).

    # set input types in runtime. It will do the same thing as
    # @provider(input_types) will do, but it is set dynamically during runtime.
    settings.input_types = {
        # The text is a sequence of integer values, and each value is a word id.
        # The whole sequence is the sentences that we want to predict its
        # sentimental.
        'data': integer_value_sequence(len(dictionary)),  # text input
        'label': integer_value(2)  # label positive/negative
    }

    # save dictionary as settings.dictionary. 
    # It will be used in process method.
    settings.dictionary = dictionary


@provider(init_hook=on_init)
def process(settings, filename):
    f = open(filename, 'r')

    for line in f:  # read each line of file
        label, sentence = line.split('\t')  # get label and sentence
        words = sentence.split(' ')  # get words

        # convert word string to word id
        # the word not in dictionary will be ignored.
        word_ids = []

        for each_word in words:
            if each_word in settings.dictionary:
                word_ids.append(settings.dictionary[each_word])

        # give data to paddle.
        yield word_ids, int(label)

    f.close()

网络配置中的调用

调用这个PyDataProvider2的方法,基本上和MNIST样例一致,除了

  • 在配置中需要读取外部字典。
  • 在声明DataProvider的时候传入dictionary作为参数。
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from paddle.trainer_config_helpers import *

dictionary = dict()
...  #  read dictionary from outside

define_py_data_sources2(
    train_list='train.list',
    test_list=None,
    module='sentimental_provider',
    obj='process',
    # above codes same as mnist sample.
    args={  # pass to provider.
        'dictionary': dictionary
    })

参考(Reference)

@provider

@provider 是一个Python的 Decorator ,可以将某一个函数标记成一个PyDataProvider2。如果不了解 Decorator 是什么也没关系,只需知道这是一个标记属性的方法就可以了。它包含的属性参数如下:

  • input_types:数据输入格式。具体的格式说明,请参考 input_types
  • should_shuffle:是不是要对数据做Shuffle。训练时默认shuffle,测试时默认不shuffle。
  • min_pool_size:设置内存中最小暂存的数据条数,也是PaddlePaddle所能够保证的shuffle粒度。如果为-1,则会预先读取全部数据到内存中。
  • pool_size: 设置内存中暂存的数据条数。如果为-1(默认),则不在乎内存暂存多少条数据。如果设置,则推荐大于训练时batch size的值,并且在内存足够的情况下越大越好。
  • can_over_batch_size:是否允许暂存略微多余pool_size的数据。由于这样做可以避免很多死锁问题,一般推荐设置成True。
  • calc_batch_size:可以传入一个函数,用于自定义每条数据的batch size(默认为1)。
  • cache: 数据缓存的策略,具体请参考 cache
  • init_hook:初始化时调用的函数,具体请参考 init_hook
  • check:如果为true,会根据input_types检查数据的合法性。
  • check_fail_continue:如果为true,那么当check出数据不合法时,会扔到这条数据,继续训练或预测。(对check=false的情况,没有作用)

input_types

PaddlePaddle的数据包括四种主要类型,和三种序列模式。

四种数据类型:

  • dense_vector:稠密的浮点数向量。
  • sparse_binary_vector:稀疏的01向量,即大部分值为0,但有值的地方必须为1。
  • sparse_float_vector:稀疏的向量,即大部分值为0,但有值的部分可以是任何浮点数。
  • integer:整数标签。

三种序列模式:

  • SequenceType.NO_SEQUENCE:不是一条序列
  • SequenceType.SEQUENCE:是一条时间序列
  • SequenceType.SUB_SEQUENCE: 是一条时间序列,且序列的每一个元素还是一个时间序列。

不同的数据类型和序列模式返回的格式不同,列表如下:

  NO_SEQUENCE SEQUENCE SUB_SEQUENCE
dense_vector [f, f, ...] [[f, ...], [f, ...], ...] [[[f, ...], ...], [[f, ...], ...],...]
sparse_binary_vector [i, i, ...] [[i, ...], [i, ...], ...] [[[i, ...], ...], [[i, ...], ...],...]
sparse_float_vector [(i,f), (i,f), ...] [[(i,f), ...], [(i,f), ...], ...] [[[(i,f), ...], ...], [[(i,f), ...], ...],...]
integer_value i [i, i, ...] [[i, ...], [i, ...], ...]

其中,f代表一个浮点数,i代表一个整数。

注意:对sparse_binary_vector和sparse_float_vector,PaddlePaddle存的是有值位置的索引。例如,

  • 对一个5维非序列的稀疏01向量 [0, 1, 1, 0, 0] ,类型是sparse_binary_vector,返回的是 [1, 2]
  • 对一个5维非序列的稀疏浮点向量 [0, 0.5, 0.7, 0, 0] ,类型是sparse_float_vector,返回的是 [(1, 0.5), (2, 0.7)]

init_hook

init_hook可以传入一个函数。该函数在初始化的时候会被调用,其参数如下:

  • 第一个参数是settings对象,它和数据传入函数的第一个参数(如本例中 process 函数的 settings 参数)必须一致。该对象具有以下两个属性:
    • settings.input_types:数据输入格式,具体请参考 input_types
    • settings.logger:一个logging对象。
  • 其他参数使用 kwargs (key word arguments)传入,包括以下两种:
    • PaddlePaddle定义的参数: 1)is_train:bool型参数,表示用于训练或预测;2)file_list:所有文件列表。
    • 用户定义的参数:使用args在网络配置中设置。

注意:PaddlePaddle保留添加参数的权力,因此init_hook尽量使用 **kwargs 来接受不使用的函数以保证兼容性。

cache

PyDataProvider2提供了两种简单的Cache策略:

  • CacheType.NO_CACHE:不缓存任何数据,每次都会从python端读取数据
  • CacheType.CACHE_PASS_IN_MEM:第一个pass会从python端读取数据,剩下的pass会直接从内存里 读取数据。

注意事项

可能的内存泄露问题

PaddlePaddle将train.list中的每一行都传递给process函数,从而生成多个generator。当训练数据非常多时,就会生成非常多的generator。

虽然每个generator在没有调用的时候,是几乎不占内存的;但当调用过一次后,generator便会存下当前的上下文(Context),而这个Context可能会非常大。并且,generator至少需要调用两次才会知道是否停止。所以,即使process函数里面只有一个yield,也需要两次随机选择到相同generator的时候,才会释放该段内存。

def func():
    yield 0

f = func()  # 创建generator
tmp = next(f)  # 调用一次,返回0
tmp = next(f)  # 调用第二次的时候,才会Stop Iteration

由于顺序调用这些generator不会出现上述问题,因此有两种解决方案:

  1. 最佳推荐:将样本的地址放入另一个文本文件,train.list写入那个文本文件的地址。即不要将每一个样本都放入train.list。
  2. 在generator的上下文中尽量留下非常少的变量引用,例如
def real_process(fn):
    # ... read from fn
    return result   # 当函数返回的时候,python可以解除掉内部变量的引用。

def process(fn):
    yield real_process(fn)

注意:这个问题是PyDataProvider读数据时候的逻辑问题,很难整体修正。

内存不够用的情况

PyDataProvider2会尽可能多的使用内存。因此,对于内存较小的机器,推荐使用 pool_size 变量来设置内存中暂存的数据条。具体请参考 @provider 中的说明。