# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import copy import numpy as np import random import paddle import paddle.nn as nn import paddle.fluid.core as core import paddle.distributed.auto_parallel as auto import paddle.nn.functional as F from paddle.distributed import fleet paddle.enable_static() paddle.distributed.init_parallel_env() class TestDataUnshard(unittest.TestCase): def test_dp2pp1mp1(self): def create_model(train_program, start_program): with paddle.static.program_guard(train_program, start_program): ROOT_MESH = auto.ProcessMesh([0, 1]) MESH_0 = auto.ProcessMesh([0, 1], ROOT_MESH) input = paddle.static.data(name='input', shape=[2, 8]) label = paddle.static.data(name='label', shape=[2, 8]) weight_attr = paddle.ParamAttr( initializer=nn.initializer.Normal( mean=0.0, std=0.02)) linear0 = nn.Linear(8, 8, weight_attr) linear1 = nn.Linear(8, 8, weight_attr) auto.shard_tensor(input, MESH_0, dim_mapping=[0, -1]) auto.shard_tensor(label, MESH_0, dim_mapping=[0, -1]) auto.shard_tensor(linear0.weight, MESH_0, dim_mapping=[-1, -1]) auto.shard_tensor(linear1.weight, MESH_0, dim_mapping=[-1, -1]) linear0_out = linear0(input) gelu_out = F.gelu(linear0_out) linear1_out = linear1(gelu_out) error_cost = paddle.nn.functional.square_error_cost(linear1_out, label) loss = paddle.mean(error_cost) return train_program, start_program, loss, input, label train_program = paddle.static.Program() start_program = paddle.static.Program() # serial program train_program, start_program, loss, input, label = create_model( train_program, start_program) dist_strategy = fleet.DistributedStrategy() dist_strategy.semi_auto = True fleet.init(is_collective=True, strategy=dist_strategy) optimizer = paddle.fluid.optimizer.AdamOptimizer( learning_rate=0.00001, beta1=0.9, beta2=0.999, epsilon=1e-08, grad_clip=None) optimizer = fleet.distributed_optimizer(optimizer) _, _, distributed_startup_program, distributed_main_program = optimizer.minimize( loss, start_program) worker_index = paddle.distributed.get_rank() paddle.seed(worker_index + 2021) random.seed(worker_index + 2021) np.random.seed(worker_index + 2021) place = paddle.set_device("gpu") exe = paddle.static.Executor(place) exe.run(distributed_startup_program) input_data = np.array(range(2 * 8)).reshape([2, 8]).astype("float32") label_data = np.random.randint(0, 10, [2, 8]).astype("float32") fetchs = [loss.name, 'input@RESHARD_0'] loss_np, shard_data_np = exe.run( distributed_main_program, feed={"input": input_data, "label": label_data}, fetch_list=fetchs) desired = input_data[worker_index].reshape(shard_data_np.shape) np.testing.assert_allclose(shard_data_np, desired) def dp1pp1mp2(self): def create_model(train_program, start_program): with paddle.static.program_guard(train_program, start_program): ROOT_MESH = auto.ProcessMesh([0, 1]) MESH_0 = auto.ProcessMesh([0, 1], ROOT_MESH) input = paddle.static.data(name='input', shape=[8, 8]) label = paddle.static.data(name='label', shape=[8, 8]) weight_attr = paddle.ParamAttr( initializer=nn.initializer.Normal( mean=0.0, std=0.02)) linear0 = nn.Linear(8, 8, weight_attr) linear1 = nn.Linear(8, 8, weight_attr) auto.shard_tensor(input, MESH_0, dim_mapping=[-1, -1]) auto.shard_tensor(label, MESH_0, dim_mapping=[-1, -1]) auto.shard_tensor(linear0.weight, MESH_0, dim_mapping=[-1, 0]) auto.shard_tensor(linear1.weight, MESH_0, dim_mapping=[0, -1]) linear0_out = linear0(input) gelu_out = F.gelu(linear0_out) linear1_out = linear1(gelu_out) error_cost = paddle.nn.functional.square_error_cost(linear1_out, label) loss = paddle.mean(error_cost) return train_program, start_program, loss, input, label train_program = paddle.static.Program() start_program = paddle.static.Program() # serial program train_program, start_program, loss, input, label = create_model( train_program, start_program) dist_strategy = fleet.DistributedStrategy() dist_strategy.semi_auto = True fleet.init(is_collective=True, strategy=dist_strategy) optimizer = paddle.fluid.optimizer.AdamOptimizer( learning_rate=0.00001, beta1=0.9, beta2=0.999, epsilon=1e-08, grad_clip=None) optimizer = fleet.distributed_optimizer(optimizer) _, _, distributed_startup_program, distributed_main_program = optimizer.minimize( loss, start_program) worker_index = paddle.distributed.get_rank() paddle.seed(worker_index + 2021) random.seed(worker_index + 2021) np.random.seed(worker_index + 2021) place = paddle.set_device("gpu") exe = paddle.static.Executor(place) exe.run(distributed_startup_program) input_data = np.array(range(8 * 8)).reshape([8, 8]).astype("float32") label_data = np.random.randint(0, 10, [8, 8]).astype("float32") fetchs = [loss.name, 'input'] loss_np, shard_data_np = exe.run( distributed_main_program, feed={"input": input_data, "label": label_data}, fetch_list=fetchs) desired = input_data.reshape(shard_data_np.shape) np.testing.assert_allclose(shard_data_np, desired) if __name__ == "__main__": unittest.main()