/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/conv_transpose_op.h" #include "paddle/fluid/operators/npu_op_runner.h" namespace paddle { namespace operators { template class Conv2DTransposeNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { // input const Tensor* input = context.Input("Input"); const Tensor* filter = context.Input("Filter"); // output Tensor* output = context.Output("Output"); output->mutable_data(context.GetPlace()); // attr std::vector output_padding = context.Attr>("output_padding"); const std::vector stride = context.Attr>("strides"); std::vector padding = context.Attr>("paddings"); std::vector dilation = context.Attr>("dilations"); const std::string data_format = context.Attr("data_format"); int groups = context.Attr("groups"); const std::string padding_algorithm = context.Attr("padding_algorithm"); // npu stream auto stream = context.template device_context().stream(); // check dimension const bool channel_last = data_format == "NHWC"; // update padding and dilation auto in_dims = input->dims(); auto filter_dims = filter->dims(); framework::DDim in_data_dims; framework::DDim filter_data_dims; if (channel_last) { in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1); } else { in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size()); } filter_data_dims = framework::slice_ddim(filter_dims, 2, in_dims.size()); std::vector ksize = framework::vectorize(filter_data_dims); UpdatePaddingAndDilation(&padding, &dilation, padding_algorithm, in_data_dims, stride, ksize); // construct NPU attr std::vector strides(4, 1); std::vector dilations(4, 1); Tensor input_tensor, output_tensor; input_tensor.ShareDataWith(*input); output_tensor.ShareDataWith(*output); if (channel_last) { input_tensor.set_layout(DataLayout::kNHWC); output_tensor.set_layout(DataLayout::kNHWC); strides[1] = stride[0]; strides[2] = stride[1]; dilations[1] = dilation[0]; dilations[2] = dilation[1]; } else { strides[2] = stride[0]; strides[3] = stride[1]; dilations[2] = dilation[0]; dilations[3] = dilation[1]; } for (auto i = output_padding.size(); i < 4; ++i) { output_padding.insert(output_padding.begin(), 0); } auto output_dim_vec = framework::vectorize(output_tensor.dims()); // CANN OP const auto& runner = NpuOpRunner("Conv2DTransposeD", {input_tensor, *filter}, {output_tensor}, {{"input_size", output_dim_vec}, {"strides", strides}, {"dilations", dilations}, {"output_padding", output_padding}, {"groups", groups}, {"pads", padding}, {"data_format", data_format}}); runner.Run(stream); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; // conv2d REGISTER_OP_NPU_KERNEL(conv2d_transpose, ops::Conv2DTransposeNPUKernel, ops::Conv2DTransposeNPUKernel);