/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PADDLE_WITH_XPU #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/operators/reduce_ops/reduce_op_xpu.h" #include "paddle/fluid/platform/device/device_wrapper.h" #include "paddle/fluid/platform/device/xpu/xpu_header.h" namespace paddle { namespace operators { inline void GetDims( const phi::DDim& dim, int axis, int* m, int* t, int* n, bool asvector) { *m = 1; *n = 1; *t = dim[axis]; if (asvector) { *t = product(dim); } else { for (int i = 0; i < axis; ++i) { (*m) *= dim[i]; } for (int i = axis + 1; i < dim.size(); ++i) { (*n) *= dim[i]; } } } using Tensor = framework::Tensor; template class P_NormXPUKernel : public framework::OpKernel { using XPUType = typename XPUTypeTrait::Type; public: void Compute(const framework::ExecutionContext& ctx) const override { auto* in = ctx.Input("X"); auto* out = ctx.Output("Out"); out->mutable_data(ctx.GetPlace()); float porder = ctx.Attr("porder"); int axis = ctx.Attr("axis"); bool asvector = ctx.Attr("asvector"); auto& dev_ctx = ctx.template device_context(); auto xdim = in->dims(); if (axis < 0) axis = xdim.size() + axis; std::vector r_dim; std::vector x_dim; std::vector y_dim; int m = 1; int n = 1; int t = 1; GetDims(xdim, axis, &m, &t, &n, asvector); x_dim.push_back(m); x_dim.push_back(t); x_dim.push_back(n); r_dim.push_back(1); y_dim.push_back(m); y_dim.push_back(n); int r = 0; xpu::ctx_guard RAII_GUARD(dev_ctx.x_context()); XPUType* tmp_x = RAII_GUARD.alloc_l3_or_gm(m * t * n); PADDLE_ENFORCE_XDNN_NOT_NULL(tmp_x); r = xpu::abs(dev_ctx.x_context(), reinterpret_cast(in->data()), tmp_x, m * t * n); PADDLE_ENFORCE_XDNN_SUCCESS(r, "abs"); if (porder == INFINITY) { r = xpu::reduce_max(dev_ctx.x_context(), tmp_x, reinterpret_cast(out->data()), x_dim, r_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "reduce_max"); } else if (porder == -INFINITY) { r = xpu::reduce_min(dev_ctx.x_context(), tmp_x, reinterpret_cast(out->data()), x_dim, r_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "reduce_min"); } else if (porder == 0) { XPUType* zeros = RAII_GUARD.alloc_l3_or_gm(1); PADDLE_ENFORCE_XDNN_NOT_NULL(zeros); r = xpu::constant(dev_ctx.x_context(), zeros, 1, 0.0f); std::vector zeros_dim(1, 1); bool* tmp2_x = RAII_GUARD.alloc_l3_or_gm(m * t * n); PADDLE_ENFORCE_XDNN_NOT_NULL(tmp2_x); r = xpu::broadcast_not_equal( dev_ctx.x_context(), tmp_x, zeros, tmp2_x, x_dim, zeros_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_not_equal"); XPUType* x_mid = tmp_x; r = xpu::cast( dev_ctx.x_context(), tmp2_x, x_mid, m * t * n); PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast"); r = xpu::reduce_sum(dev_ctx.x_context(), x_mid, reinterpret_cast(out->data()), x_dim, r_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "reduce_sum"); } else { Tensor porder_tensor; framework::DDim pdim = phi::make_ddim({1}); porder_tensor.mutable_data(pdim, in->place()); r = xpu::constant( dev_ctx.x_context(), porder_tensor.data(), 1, porder); PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant"); std::vector p_dim(1, 1); XPUType* tmp2_x = RAII_GUARD.alloc_l3_or_gm(m * t * n); PADDLE_ENFORCE_XDNN_NOT_NULL(tmp2_x); r = xpu::broadcast_pow( dev_ctx.x_context(), reinterpret_cast(tmp_x), reinterpret_cast(porder_tensor.data()), tmp2_x, x_dim, p_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_pow"); XPUType* tmp_y = RAII_GUARD.alloc_l3_or_gm(m * n); PADDLE_ENFORCE_XDNN_NOT_NULL(tmp_y); r = xpu::reduce_sum(dev_ctx.x_context(), reinterpret_cast(tmp2_x), tmp_y, x_dim, r_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "reduce_sum"); r = xpu::constant( dev_ctx.x_context(), porder_tensor.data(), 1, 1.0f / porder); PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant"); r = xpu::broadcast_pow( dev_ctx.x_context(), reinterpret_cast(tmp_y), reinterpret_cast(porder_tensor.data()), reinterpret_cast(out->data()), y_dim, p_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_pow"); dev_ctx.Wait(); } } }; template class P_NormGradXPUKernel : public framework::OpKernel { using XPUType = typename XPUTypeTrait::Type; public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* y = ctx.Input("Out"); auto* dy = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); dx->mutable_data(ctx.GetPlace()); auto xdim = x->dims(); float porder = ctx.Attr("porder"); bool asvector = ctx.Attr("asvector"); int axis = ctx.Attr("axis"); axis = axis < 0 ? xdim.size() + axis : axis; auto& dev_ctx = ctx.template device_context(); int m, t, n; GetDims(xdim, axis, &m, &t, &n, asvector); std::vector r_dim; std::vector x_dim; std::vector y_dim; x_dim.push_back(m); x_dim.push_back(t); x_dim.push_back(n); y_dim.push_back(m); y_dim.push_back(1); y_dim.push_back(n); int r = 0; if (porder == 0) { r = xpu::constant(dev_ctx.x_context(), reinterpret_cast(dx->data()), m * t * n, static_cast(0)); PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant"); } else if (porder == INFINITY || porder == -INFINITY) { xpu::ctx_guard RAII_GUARD(dev_ctx.x_context()); XPUType* x_abs = RAII_GUARD.alloc_l3_or_gm(m * t * n); PADDLE_ENFORCE_XDNN_NOT_NULL(x_abs); r = xpu::abs(dev_ctx.x_context(), reinterpret_cast(x->data()), x_abs, m * t * n); PADDLE_ENFORCE_XDNN_SUCCESS(r, "abs"); bool* dx_t = RAII_GUARD.alloc_l3_or_gm(m * t * n); PADDLE_ENFORCE_XDNN_NOT_NULL(dx_t); XPUType* dx_mid = RAII_GUARD.alloc_l3_or_gm(m * t * n); PADDLE_ENFORCE_XDNN_NOT_NULL(dx_mid); r = xpu::broadcast_equal( dev_ctx.x_context(), reinterpret_cast(x_abs), reinterpret_cast(y->data()), dx_t, x_dim, y_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_equal"); r = xpu::cast( dev_ctx.x_context(), dx_t, dx_mid, m * t * n); PADDLE_ENFORCE_XDNN_SUCCESS(r, "cast"); XPUType* x_sign = RAII_GUARD.alloc_l3_or_gm(m * t * n); PADDLE_ENFORCE_XDNN_NOT_NULL(x_sign); r = xpu::sign(dev_ctx.x_context(), reinterpret_cast(x->data()), x_sign, m * t * n); PADDLE_ENFORCE_XDNN_SUCCESS(r, "sign"); XPUType* dx_pre_dy = x_abs; r = xpu::mul(dev_ctx.x_context(), reinterpret_cast(dx_mid), reinterpret_cast(x_sign), dx_pre_dy, m * t * n); PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul"); r = xpu::broadcast_mul(dev_ctx.x_context(), dx_pre_dy, reinterpret_cast(dy->data()), reinterpret_cast(dx->data()), x_dim, y_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_mul"); } else { xpu::ctx_guard RAII_GUARD(dev_ctx.x_context()); XPUType* x_abs = RAII_GUARD.alloc_l3_or_gm(m * t * n); PADDLE_ENFORCE_XDNN_NOT_NULL(x_abs); r = xpu::abs(dev_ctx.x_context(), reinterpret_cast(x->data()), x_abs, m * t * n); PADDLE_ENFORCE_XDNN_SUCCESS(r, "abs"); Tensor porder_tensor; framework::DDim pdim = phi::make_ddim({1}); porder_tensor.mutable_data(pdim, x->place()); r = xpu::constant( dev_ctx.x_context(), porder_tensor.data(), 1, porder - 1.0f); PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant"); std::vector p_dim(1, 1); XPUType* x_pow = RAII_GUARD.alloc_l3_or_gm(m * t * n); PADDLE_ENFORCE_XDNN_NOT_NULL(x_pow); r = xpu::broadcast_pow( dev_ctx.x_context(), reinterpret_cast(x_abs), reinterpret_cast(porder_tensor.data()), x_pow, x_dim, p_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_pow"); XPUType* y_pow = RAII_GUARD.alloc_l3_or_gm(m * n); PADDLE_ENFORCE_XDNN_NOT_NULL(y_pow); r = xpu::broadcast_pow( dev_ctx.x_context(), reinterpret_cast(y->data()), reinterpret_cast(porder_tensor.data()), y_pow, y_dim, p_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_pow"); dev_ctx.Wait(); XPUType* dx_t = x_abs; r = xpu::broadcast_div( dev_ctx.x_context(), x_pow, y_pow, dx_t, x_dim, y_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_div"); XPUType* x_sign = x_pow; r = xpu::sign(dev_ctx.x_context(), reinterpret_cast(x->data()), x_sign, m * t * n); PADDLE_ENFORCE_XDNN_SUCCESS(r, "sign"); XPUType* dx_mid = RAII_GUARD.alloc_l3_or_gm(m * t * n); PADDLE_ENFORCE_XDNN_NOT_NULL(dx_mid); r = xpu::broadcast_mul(dev_ctx.x_context(), reinterpret_cast(x_sign), reinterpret_cast(dy->data()), dx_mid, x_dim, y_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_mul"); r = xpu::broadcast_mul(dev_ctx.x_context(), reinterpret_cast(dx_t), reinterpret_cast(dx_mid), reinterpret_cast(dx->data()), x_dim, x_dim); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_mul"); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_XPU_KERNEL( p_norm, ops::P_NormXPUKernel); REGISTER_OP_XPU_KERNEL( p_norm_grad, ops::P_NormGradXPUKernel); #endif