# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core import gradient_checker from decorator_helper import prog_scope class TestElementwiseMulDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. shape = [2, 3, 4, 5] eps = 0.005 dtype = np.float64 x = layers.data('x', shape, False, dtype) y = layers.data('y', shape, False, dtype) x.persistable = True y.persistable = True out = layers.elementwise_mul(x, y) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) y_arr = np.random.uniform(-1, 1, shape).astype(dtype) gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. shape = [2, 3, 4, 5] eps = 0.005 dtype = np.float64 x = layers.data('x', shape, False, dtype) y = layers.data('y', shape[:-1], False, dtype) x.persistable = True y.persistable = True out = layers.elementwise_mul(x, y, axis=0) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype) gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestElementwiseAddDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. shape = [2, 3, 4, 5] eps = 0.005 dtype = np.float64 x = layers.data('x', shape, False, dtype) y = layers.data('y', shape, False, dtype) x.persistable = True y.persistable = True out = layers.elementwise_add(x, y) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) y_arr = np.random.uniform(-1, 1, shape).astype(dtype) gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. shape = [2, 3, 4, 5] eps = 0.005 dtype = np.float64 x = layers.data('x', shape, False, dtype) y = layers.data('y', shape[:-1], False, dtype) x.persistable = True y.persistable = True out = layers.elementwise_add(x, y, axis=0) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype) gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestElementwiseSubDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. shape = [2, 3, 4, 5] eps = 0.005 dtype = np.float64 x = layers.data('x', shape, False, dtype) y = layers.data('y', shape, False, dtype) x.persistable = True y.persistable = True out = layers.elementwise_sub(x, y) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) y_arr = np.random.uniform(-1, 1, shape).astype(dtype) gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. shape = [2, 3, 4, 5] eps = 0.005 dtype = np.float64 x = layers.data('x', shape, False, dtype) y = layers.data('y', shape[:-1], False, dtype) x.persistable = True y.persistable = True out = layers.elementwise_sub(x, y, axis=0) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype) gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestElementwiseDivDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. shape = [2, 3, 4, 5] eps = 0.0001 dtype = np.float64 x = layers.data('x', shape, False, dtype) y = layers.data('y', shape, False, dtype) x.persistable = True y.persistable = True out = layers.elementwise_div(x, y, axis=0) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) y_arr = np.random.uniform(-1, 1, shape).astype(dtype) y_arr[np.abs(y_arr) < 0.005] = 0.02 gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. shape = [2, 3, 4, 5] eps = 0.0001 dtype = np.float64 x = layers.data('x', shape, False, dtype) y = layers.data('y', shape[1:-1], False, dtype) x.persistable = True y.persistable = True out = layers.elementwise_div(x, y, axis=1) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) y_arr = np.random.uniform(-1, 1, shape[1:-1]).astype(dtype) y_arr[np.abs(y_arr) < 0.005] = 0.02 gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestElementwiseAddTripleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. shape = [2, 3, 4, 5] eps = 0.005 dtype = np.float64 x = layers.data('x', shape, False, dtype) y = layers.data('y', shape, False, dtype) x.persistable = True y.persistable = True out = layers.elementwise_add(x, y) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) y_arr = np.random.uniform(-1, 1, shape).astype(dtype) gradient_checker.triple_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestElementwiseAddBroadcastTripleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. shape = [2, 3, 4, 5] eps = 0.005 dtype = np.float64 x = layers.data('x', shape, False, dtype) y = layers.data('y', shape[:-1], False, dtype) x.persistable = True y.persistable = True out = layers.elementwise_add(x, y, axis=0) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype) gradient_checker.triple_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) if __name__ == "__main__": unittest.main()