/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve . Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/dynamic_recurrent_op.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { using framework::Scope; using framework::TensorArray; using framework::LoDTensor; using framework::Variable; namespace detail { inline void CreateVariables(Scope& scope, const std::vector& var_names) { for (const auto& name : var_names) { scope.GetOrCreateVar(name); } } } // namespace detail class DynamicRecurrentOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker { public: DynamicRecurrentOpProtoAndCheckerMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { const auto& name = DynamicRecurrentOp::kArgName; // inputs and outputs stored in proto AddInput(name.inlinks, "the inputs that need to be segmented for each step.") .AsDuplicable(); AddInput(name.boot_memories, "variables to initialize memories.") .AsDuplicable(); AddOutput(name.outlinks, "the outputs that need to concated for all steps.") .AsDuplicable(); AddOutput(name.step_scopes, "step scopes"); // Attributes stored in AttributeMap AddAttr>(name.pre_memories, "names of pre-memories"); AddAttr>(name.memories, "names of memories"); AddComment("This is a RNN operator for varience-length sequences."); } }; void DynamicRecurrentOp::Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const { cache_.Init(kArgName, *this, scope, &arg_); SplitInputs(); CreateScopes(); WriteStepInputs(); InitStates(); // call stepnet in all the time steps for (size_t step = 0; step < cache_.num_steps; step++) { auto& step_scope = cache_.GetScope(step); stepnet_->Run(step_scope, dev_ctx); } WriteStepOutputs(); ConcatOutputs(); } void DynamicRecurrentOp::SplitInputs() const { // TODO(superjom) make level a config // TODO(superjom) check all the inputs has the same LoD int level = 0; const auto& inlinks = cache_.inlinks; for (const auto& item : inlinks) { const auto& var = item.second; const auto& tensor = var->Get(); TensorArray& ta = step_inputs_[item.first]; dy_seq_metas_[item.first] = ta.Unpack(tensor, level, true /*length_descend*/); if (cache_.num_steps) { PADDLE_ENFORCE_EQ(ta.size(), cache_.num_steps, "inputs should have the same steps"); } else { cache_.num_steps = ta.size(); } } } void DynamicRecurrentOp::WriteStepInputs() const { for (const auto& item : cache_.inlinks) { auto ta_it = step_inputs_.find(item.first); PADDLE_ENFORCE(ta_it != step_inputs_.end(), "step_inputs_ not compatible with memory set"); TensorArray& ta = ta_it->second; for (size_t step = 0; step < ta.size(); step++) { auto tensor = ta.Read(step); auto& step_scope = cache_.GetScope(step); Variable* var = step_scope.FindVar(item.first); if (var == nullptr) { var = step_scope.GetOrCreateVar(item.first); } var->GetMutable()->ShareDataWith(tensor); } } } void DynamicRecurrentOp::WriteStepOutputs() const { for (size_t step = 0; step < cache_.scopes->size(); step++) { auto& scope = cache_.GetScope(step); for (auto& item : step_outputs_) { auto* var = scope.FindVar(item.first); if (var == nullptr) { var = scope.GetOrCreateVar(item.first); } auto* tensor = var->GetMutable(); item.second.WriteShared(step, *tensor); } } } void DynamicRecurrentOp::CreateScopes() const { PADDLE_ENFORCE_GT(cache_.num_steps, 0); // resize scopes size_t num_scopes_need_create = cache_.num_steps - cache_.scopes->size(); for (size_t i = 0; i < num_scopes_need_create; i++) { cache_.scopes->emplace_back(&cache_.scope->NewScope()); } // init temporary inputs PADDLE_ENFORCE_NOT_NULL(stepnet_, "stepnet should be set first"); std::vector memories; std::vector pre_memories; std::transform(arg_.memories.begin(), arg_.memories.end(), std::back_inserter(memories), [](const rnn::MemoryAttr& m) { return m.var; }); std::transform(arg_.memories.begin(), arg_.memories.end(), std::back_inserter(pre_memories), [](const rnn::MemoryAttr& m) { return m.pre_var; }); for (size_t step = 0; step < cache_.num_steps; step++) { auto& scope = cache_.GetScope(step); detail::CreateVariables(scope, arg_.inlinks); detail::CreateVariables(scope, arg_.outlinks); detail::CreateVariables(scope, memories); detail::CreateVariables(scope, pre_memories); } } void DynamicRecurrentOp::ConcatOutputs() const { // TODO(superjom) transform this to a config int level = 0; // TODO(superjom) pass in some lod // just a placeholder framework::LoD lod; for (auto& item : step_outputs_) { auto tensor = item.second.Pack(level, dy_seq_metas_[item.first], lod); auto& output = cache_.outlinks[item.first]->Get(); const_cast(&output)->ShareDataWith(tensor); } } void DynamicRecurrentOp::InitStates() const { // init the first state // TODO(superjom) parepare the scenerio that boot state not exists for (auto memory : arg_.memories) { auto* boot_state_var = cache_.scope->FindVar(memory.boot_var); PADDLE_ENFORCE_NOT_NULL(boot_state_var); auto& boot_state = boot_state_var->Get(); const auto& dims = boot_state.dims(); for (size_t step = 0; step < cache_.num_steps; step++) { auto& cur_scope = cache_.GetScope(step); // link pre-state to boot_state // init state and pre-state auto* pre_state = cur_scope.FindVar(memory.pre_var); PADDLE_ENFORCE_NOT_NULL(pre_state); pre_state->GetMutable(); auto* state = cur_scope.FindVar(memory.var); PADDLE_ENFORCE_NOT_NULL(state); state->GetMutable()->Resize(dims); state->GetMutable()->mutable_data( platform::CPUPlace()); if (step == 0) { auto* pre_state_tensor = pre_state->GetMutable(); pre_state_tensor->Resize(boot_state.dims()); pre_state_tensor->ShareDataWith(boot_state); } else { auto& pre_scope = cache_.GetScope(step - 1); auto* state_pre = pre_scope.FindVar(memory.var); PADDLE_ENFORCE_NOT_NULL(state_pre); pre_state->GetMutable()->ShareDataWith( *state_pre->GetMutable()); } } } } void DynamicRecurrentOp::ArgCache::Init( const rnn::ArgumentName& name, const paddle::framework::OperatorBase& op, const paddle::framework::Scope& scope, rnn::Argument* arg) { this->scope = &scope; InitArgument(name, op, arg); CacheScopes(scope, *arg); CacheInlinks(scope, arg->inlinks); CacheOutlinks(scope, arg->outlinks); } void DynamicRecurrentOp::ArgCache::InitArgument(const rnn::ArgumentName& name, const OperatorBase& op, rnn::Argument* arg) { rnn::InitArgument(name, arg, op, false /*is_grad*/); } void DynamicRecurrentOp::ArgCache::CacheScopes(const Scope& scope, const rnn::Argument& arg) { auto scopes_var = scope.FindVar(arg.step_scopes); PADDLE_ENFORCE(scopes_var != nullptr, "the step_scopes output argument [%s] should be created first " "by framework.", arg.step_scopes); this->scopes = scopes_var->GetMutable>(); } void DynamicRecurrentOp::ArgCache::CacheInlinks( const Scope& scope, const std::vector& names) { for (auto name : names) { auto* var = GetVariable(scope, name); inlinks[name] = var; } } void DynamicRecurrentOp::ArgCache::CacheOutlinks( const Scope& scope, const std::vector& names) { for (auto name : names) { auto* var = GetVariable(scope, name); outlinks[name] = var; } } Variable* DynamicRecurrentOp::ArgCache::GetVariable(const Scope& scope, const std::string& name) { auto* var = scope.FindVar(name); PADDLE_ENFORCE_NOT_NULL(var, "variable [%s] not exist in scope", name); return var; } const rnn::ArgumentName DynamicRecurrentOp::kArgName{ "step_net", "step_scopes", "inlinks", "outlinks", "memories", "pre_memories", "boot_memories"}; void DynamicRecurrentGradientOp::Run( const Scope& scope, const platform::DeviceContext& dev_ctx) const {} } // namespace operators } // namespace paddle REGISTER_OP_WITHOUT_GRADIENT( dynamic_recurrent, paddle::operators::DynamicRecurrentOp, paddle::operators::DynamicRecurrentOpProtoAndCheckerMaker);