# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unlessf required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from ..layer_helper import LayerHelper from ..param_attr import ParamAttr from ..framework import convert_np_dtype_to_dtype_ from ..framework import Variable from ..initializer import Constant, force_init_on_cpu from ..core import VarDesc from ..imperative import base as imperative_base from .layer_function_generator import templatedoc import numpy __all__ = [ 'create_tensor', 'create_parameter', 'create_global_var', 'cast', 'tensor_array_to_tensor', 'concat', 'sums', 'assign', 'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax', 'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite', 'range', 'zeros_like', ] def create_tensor(dtype, name=None, persistable=False): """ Create an variable, which will hold a LoDTensor with data type dtype. Args: dtype(string): 'float32'|'int32'|..., the data type of the created tensor. name(string): The name of the created tensor, if not set, the name will be a random unique one. persistable(bool): Set the persistable flag of the create tensor. Returns: Variable: The tensor variable storing the created tensor. Examples: .. code-block:: python tensor = fluid.layers.create_tensor(dtype='float32') """ helper = LayerHelper("create_tensor", **locals()) return helper.create_variable( name=helper.name, dtype=dtype, persistable=persistable) def create_parameter(shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None): """ Create a parameter. The parameter is a learnable variable, which can have gradient, and can be optimized. NOTE: this is a very low-level API. This API is useful when you create operator by your self. instead of using layers. Args: shape(list[int]): shape of the parameter dtype(string): element type of the parameter attr(ParamAttr): attributes of the parameter is_bias(bool): This can affect which default initializer is chosen when default_initializer is None. If is_bias, initializer.Constant(0.0) will be used. Otherwise, Xavier() will be used. default_initializer(Initializer): initializer for the parameter Returns: the created parameter. Examples: >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32') >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False) >>> hidden = fluid.layers.matmul(x=data, y=W) """ helper = LayerHelper("create_parameter", **locals()) if attr is None: attr = ParamAttr(name=name) return helper.create_parameter(attr, shape, dtype, is_bias, default_initializer) def create_global_var(shape, value, dtype, persistable=False, force_cpu=False, name=None): """ Create a new tensor variable with value in the global block(block 0). Args: shape(list[int]): shape of the variable value(float): the value of the variable. The new created variable will be filled with it. dtype(string): data type of the variable persistable(bool): if this variable is persistable. Default: False force_cpu(bool): force this variable to be on CPU. Default: False name(str|None): The name of the variable. If set to None the variable name will be generated automatically. Default: None Returns: Variable: the created Variable Examples: .. code-block:: python var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32', persistable=True, force_cpu=True, name='new_var') """ helper = LayerHelper("global_var", **locals()) var = helper.create_global_variable( dtype=dtype, shape=shape, persistable=persistable, name=name, stop_gradient=True) helper.set_variable_initializer( var, initializer=Constant( value=float(value), force_cpu=force_cpu)) return var def cast(x, dtype): """ This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it to the output with :attr:`dtype`. It's meaningless if the output dtype equals the input dtype, but it's fine if you do so. Args: x (Variable): The input Variable for casting. dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable. Returns: Variable: The output Variable after casting. Examples: .. code-block:: python data = fluid.layers.data(name='x', shape=[13], dtype='float32') result = fluid.layers.cast(x=data, dtype='float64') """ helper = LayerHelper('cast', **locals()) out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='cast', inputs={'X': [x]}, outputs={'Out': [out]}, attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype}) return out def concat(input, axis=0, name=None): """ **Concat** This function concatenates the input along the axis mentioned and returns that as the output. Args: input(list): List of tensors to be concatenated axis(int): Integer axis along which the tensors will be concatenated name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. Returns: Variable: Output variable of the concatenation Examples: .. code-block:: python out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth]) """ helper = LayerHelper('concat', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op( type='concat', inputs={'X': input}, outputs={'Out': [out]}, attrs={'axis': axis}) return out def tensor_array_to_tensor(input, axis=1, name=None): """ This function concatenates the input LodTensorArray along the axis mentioned and returns that as the output. A simple example as below: .. code-block:: text Given: input.data = {[[0.6, 0.1, 0.3], [0.5, 0.3, 0.2]], [[1.3], [1.8]], [[2.3, 2.1], [2.5, 2.4]]} axis = 1 Then: output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1], [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]] output_index.data = [3, 1, 2] Args: input(list): Input LodTensorArray axis(int): Integer axis along which the tensors will be concatenated name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. Returns: Variable: Output variable of the concatenation Variable: The input LodTensorArray items' dims along the axis Examples: .. code-block:: python output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array) """ helper = LayerHelper('tensor_array_to_tensor', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) out_index = helper.create_variable_for_type_inference(dtype="int32") helper.append_op( type='tensor_array_to_tensor', inputs={'X': input}, outputs={'Out': [out], 'OutIndex': [out_index]}, attrs={'axis': axis}) return out, out_index def sums(input, out=None): """ This function performs the sum operation on the input and returns the result as the output. Args: input (Variable|list): The input tensor that has the elements that need to be summed up. out (Variable|None): Output parameter. The sum result. Default: None Returns: Variable: the sum of input. The same as the argument 'out' Examples: .. code-block:: python tmp = fluid.layers.zeros(shape=[10], dtype='int32') i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) a0 = layers.array_read(array=tmp, i=i) i = layers.increment(x=i) a1 = layers.array_read(array=tmp, i=i) mean_a0 = layers.mean(a0) mean_a1 = layers.mean(a1) a_sum = layers.sums(input=[mean_a0, mean_a1]) """ helper = LayerHelper('sum', **locals()) if out is None: out = helper.create_variable_for_type_inference( dtype=helper.input_dtype()) helper.append_op( type='sum', inputs={'X': input}, outputs={'Out': out}, attrs={'use_mkldnn': False}) return out def assign(input, output=None): """ **Assign** This function copies the *input* Variable to the *output* Variable. Args: input(Variable|numpy.ndarray): The source variable output(Variable|None): The destination variable Returns: Variable: The destination variable that was supplied as the *output*. Examples: .. code-block:: python out = fluid.layers.create_tensor(dtype='float32') hidden = fluid.layers.fc(input=data, size=10) fluid.layers.assign(hidden, out) """ helper = LayerHelper('assign', **locals()) if output is None: output = helper.create_variable_for_type_inference(dtype=input.dtype) if isinstance(input, Variable): helper.append_op( type='assign', inputs={'X': [input]}, outputs={'Out': [output]}) elif isinstance(input, numpy.ndarray): dtype = convert_np_dtype_to_dtype_(input.dtype) if dtype == VarDesc.VarType.FP32: value_name = "fp32_values" values = [float(v) for v in input.flat] elif dtype == VarDesc.VarType.INT32: value_name = "int32_values" values = [int(v) for v in input.flat] else: raise ValueError("Unsupported dtype %s", input.dtype) if input.size > 1024 * 1024: raise ValueError("The size of input is too big. Please consider " "saving it to file and 'load_op' to load it") helper.append_op( type='assign_value', outputs={'Out': [output]}, attrs={ 'dtype': dtype, 'shape': list(input.shape), value_name: values }) else: raise ValueError("Wrong type for assign input: %s" % type(input)) return output def fill_constant(shape, dtype, value, force_cpu=False, out=None): """ **fill_constant** This function creates a tensor with specified `shape` and `dtype`, and initializes it with a constant specifed by `value`. The attribute `stop_gradient` of the created tensor is set to True. Args: shape(tuple|list|None): Shape of the output tensor. dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor. value(float): The constant value used to initialize the output tensor. out(Variable): The output tensor. force_cpu(True|False): data should be on CPU if set true. Returns: Variable: The tensor variable storing the output. Examples: .. code-block:: python data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64') """ helper = LayerHelper("fill_constant", **locals()) if out is None: out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='fill_constant', inputs={}, outputs={'Out': [out]}, attrs={ 'shape': shape, 'dtype': out.dtype, 'value': float(value), 'force_cpu': force_cpu or force_init_on_cpu() }, stop_gradient=True) out.stop_gradient = True return out @templatedoc() def fill_constant_batch_size_like(input, shape, dtype, value, input_dim_idx=0, output_dim_idx=0): """ ${comment} It also sets *stop_gradient* to True. Args: input(${input_type}): ${input_comment}. shape(${shape_type}): ${shape_comment}. dtype(${dtype_type}): ${dtype_comment}. value(${value_type}): ${value_comment}. input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}. output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}. Returns: ${out_comment}. Examples: .. code-block:: python data = fluid.layers.fill_constant_batch_size_like( input=like, shape=[1], value=0, dtype='int64') """ helper = LayerHelper("fill_constant_batch_size_like", **locals()) out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='fill_constant_batch_size_like', inputs={'Input': input}, outputs={'Out': [out]}, attrs={ 'shape': shape, 'dtype': out.dtype, 'value': float(value), 'input_dim_idx': input_dim_idx, 'output_dim_idx': output_dim_idx }) out.stop_gradient = True return out def argmin(x, axis=0): """ **argmin** This function computes the indices of the min elements of the input tensor's element along the provided axis. Args: x(Variable): The input to compute the indices of the min elements. axis(int): Axis to compute indices along. Returns: Variable: The tensor variable storing the output Examples: .. code-block:: python out = fluid.layers.argmin(x=in, axis=0) out = fluid.layers.argmin(x=in, axis=-1) """ helper = LayerHelper("arg_min", **locals()) out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op( type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs={'axis': axis}) return out def argmax(x, axis=0): """ **argmax** This function computes the indices of the max elements of the input tensor's element along the provided axis. Args: x(Variable): The input to compute the indices of the max elements. axis(int): Axis to compute indices along. Returns: Variable: The tensor variable storing the output Examples: .. code-block:: python out = fluid.layers.argmax(x=in, axis=0) out = fluid.layers.argmax(x=in, axis=-1) """ helper = LayerHelper("arg_max", **locals()) out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op( type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs={'axis': axis}) return out def argsort(input, axis=-1, name=None): """ Performs sorting on the input Variable along the given axis, and outputs sorted data Varibale and its corresponding index Variable with the same shape as :attr:`input`. .. code-block:: text For example, the given axis is -1 and the input Variable input = [[0.15849551, 0.45865775, 0.8563702 ], [0.12070083, 0.28766365, 0.18776911]], after argsort, the sorted Vairable becomes out = [[0.15849551, 0.45865775, 0.8563702 ], [0.12070083, 0.18776911, 0.28766365]], and the sorted indices along the given axis turn outs to be indices = [[0, 1, 2], [0, 2, 1]] Args: input(Variable): The input Variable for sorting. axis(int): The axis along which to sort the input Variable. When :attr:`axis` < 0, the actual axis will be :attr:`axis` + rank(:attr:`input`). Default -1, the last dimension. name(str|None): (optional) A name for this layer. If set None, the layer will be named automatically. Returns: tuple: A tuple of sorted data Variable and the sorted indices. Examples: .. code-block:: python input = fluid.layers.data(data=[2, 3]) out, indices = fluid.layers.argsort(input, axis=0) """ helper = LayerHelper("argsort", **locals()) out = helper.create_variable_for_type_inference( dtype=input.dtype, stop_gradient=True) ids = helper.create_variable_for_type_inference( VarDesc.VarType.INT64, stop_gradient=True) helper.append_op( type='argsort', inputs={'X': input}, outputs={'Out': out, 'Indices': ids}, attrs={'axis': axis}) return out, ids def ones(shape, dtype, force_cpu=False): """ **ones** This function creates a tensor of specified *shape* and *dtype*, and initializes this with 1. It also sets *stop_gradient* to True. Args: shape(tuple|list): Shape of output tensor dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor Returns: Variable: The tensor variable storing the output Examples: .. code-block:: python data = fluid.layers.ones(shape=[1], dtype='int64') """ assert isinstance(shape, list) or isinstance( shape, tuple), "The shape's type should be list or tuple." assert reduce(lambda x, y: x * y, shape) > 0, "The shape is invalid: %s." % (str(shape)) return fill_constant(value=1.0, **locals()) def zeros(shape, dtype, force_cpu=False): """ **zeros** This function creates a tensor of specified *shape* and *dtype*, and initializes this with 0. It also sets *stop_gradient* to True. Args: shape(tuple|list|None): Shape of output tensor. dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor. force_cpu(bool, default False): Whether to make output stay on CPU. Returns: Variable: The tensor variable storing the output. Examples: .. code-block:: python data = fluid.layers.zeros(shape=[1], dtype='int64') """ return fill_constant(value=0.0, **locals()) def reverse(x, axis): """ **reverse** This function reverse the input 'x' along given axises. Args: x(Vairbale): the input to be reversed. axis(int|tuple|list): Axis that along which order of elements is reversed. If it is a tuple or a list, reversing will be apply on each axis in the tuple or list. Returns: Variable: The reversed tensor. Examples: .. code-block:: python out = fluid.layers.reverse(x=in, axis=0) # or: out = fluid.layers.reverse(x=in, axis=[0,1]) """ if isinstance(axis, int): axis = [axis] helper = LayerHelper("reverse", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='reverse', inputs={'X': x}, outputs={'Out': [out]}, attrs={'axis': axis}) return out def save(x, file_path, overwrite=True): """ Saves a variable as a file. Args: x(variable): The Tensor/LoDTensor to be saved. file_path(str): The file path where the variable will be saved. overwrite(bool): Whether or not cover the given file when it has already existed. If it's set 'False' and the file is existed, a runtime error will be thrown. """ helper = LayerHelper("save", **locals()) helper.append_op( type="save", inputs={"input": x}, outputs={}, args={"file_path": file_path, "overwrite": overwrite}) def save_combine(x, file_path, overwrite=True): """ Saves a list of variables into a single file. Args: x(list): A list of Tensor/LoDTensor variables to be saved together in a single file. file_path(str): The file path where variables will be saved. overwrite(bool): Whether or not cover the given file when it has already existed. If it's set 'False' and the file is existed, a runtime error will be thrown. Returns: There is no return value. Examples: .. code-block:: python v1 = fluid.layers.data(name="data", shape=(4, 6), dtype="float32") v2 = fluid.layers.data(name="data", shape=(6, 8, 4), dtype="float32") normed = fluid.layers.save_combine([v1, v2], file_path="output") """ helper = LayerHelper("save_combine", **locals()) helper.append_op( type="save_combine", inputs={"input": x}, outputs={}, args={"file_path": file_path, "overwrite": overwrite}) def load_combine(out, file_path): """ Loads a list of vairables from a single file. Args: out(list): The list of variables to be read from the disk file. file_path(str): The path of the disk file. """ helper = LayerHelper("load_combine", **locals()) helper.append_op( type="load_combine", inputs={}, output={"Out": out}, args={"file_path": file_path}) def has_inf(x): """ Test if any of x contains an infinity number Args: x(variable): The Tensor/LoDTensor to be checked. Returns: Variable: The tensor variable storing the output, only a bool value. """ helper = LayerHelper("isinf", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out}) return out def has_nan(x): """ Test if any of x contains a NAN Args: x(variable): The Tensor/LoDTensor to be checked. Returns: Variable: The tensor variable storing the output, only a bool value. """ helper = LayerHelper("isnan", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out}) return out def isfinite(x): """ Test if any of x contains an infinity/NAN number. If all the elements are finite, returns true, else false. Args: x(variable): The Tensor/LoDTensor to be checked. Returns: Variable: The tensor variable storing the output, contains a bool value. """ helper = LayerHelper("isfinite", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out}) return out def range(start, end, step, dtype): """ Return evenly spaced values within a given interval. Values are generated within the half-open interval [start, stop) (in other words, the interval including start but excluding stop). args: start(int|float|Variable): Start of interval. The interval includes this value. end(int|float|Variable): End of interval. The interval does not include this value, except in some cases where step is not an integer and floating point round-off affects the length of out. step(int|float|Variable): Spacing between values. For any output out, this is the distance between two adjacent values, out[i+1] - out[i]. The default step size is 1. dtype(string): 'float32'|'int32'|..., the data type of the output tensor. returns: Evenly spaced values within a given interval. examples: .. code-block:: python data = fluid.layers.range(0, 10, 2, 'int32') """ helper = LayerHelper("range", **locals()) if not isinstance(start, Variable): start = fill_constant([1], dtype, start) if not isinstance(end, Variable): end = fill_constant([1], dtype, end) if not isinstance(step, Variable): step = fill_constant([1], dtype, step) out = helper.create_variable_for_type_inference(dtype=start.dtype) helper.append_op( type='range', inputs={'Start': start, 'End': end, 'Step': step}, outputs={'Out': [out]}) return out def zeros_like(x, out=None): """ **zeros_like** This function creates a zeros tensor which has identical shape and dtype with `x`. Args: x(Variable): The input tensor which specifies shape and dtype. out(Variable): The output tensor. Returns: Variable: The tensor variable storing the output. Examples: .. code-block:: python data = fluid.layers.zeros_like(x) """ helper = LayerHelper("zeros_like", **locals()) if out is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]}) out.stop_gradient = True return out