from paddle.trainer_config_helpers import * settings( learning_rate=1e-4, learning_method=AdamOptimizer(), batch_size=1000, model_average=ModelAverage(average_window=0.5), regularization=L2Regularization(rate=0.5)) imgs = data_layer(name='pixel', size=784) hidden1 = fc_layer(input=imgs, size=200) hidden2 = fc_layer(input=hidden1, size=200) inference = fc_layer(input=hidden2, size=10, act=SoftmaxActivation()) cost = classification_cost( input=inference, label=data_layer( name='label', size=10)) outputs(cost)