# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import argparse import time import math import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler from paddle.fluid import core import unittest from multiprocessing import Process import os import signal from functools import reduce from test_dist_base import TestDistRunnerBase, runtime_main from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy paddle.enable_static() DTYPE = "float32" paddle.dataset.mnist.fetch() # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 def cnn_model(data): conv_pool_1 = fluid.nets.simple_img_conv_pool( input=data, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu", param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( value=0.01))) conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu", param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( value=0.01))) SIZE = 10 input_shape = conv_pool_2.shape param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE] scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5 predict = fluid.layers.fc( input=conv_pool_2, size=SIZE, act="softmax", param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Constant(value=0.01))) return predict class TestDistMnist2x2(TestDistRunnerBase): def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None): # Input data images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program predict = cnn_model(images) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) # Evaluator batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy( input=predict, label=label, total=batch_size_tensor) inference_program = fluid.default_main_program().clone() # Optimization # TODO(typhoonzero): fix distributed adam optimizer # opt = fluid.optimizer.AdamOptimizer( # learning_rate=0.001, beta1=0.9, beta2=0.999) if not use_dgc: opt = fluid.optimizer.Momentum(learning_rate=self.lr, momentum=0.9) else: opt = fluid.optimizer.DGCMomentumOptimizer( learning_rate=self.lr, momentum=0.9, rampup_begin_step=2) # Reader train_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) if dist_strategy: dist_opt = fleet.distributed_optimizer( optimizer=opt, strategy=dist_strategy) _, param_grads = dist_opt.minimize(avg_cost) else: opt.minimize(avg_cost) return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict if __name__ == "__main__": runtime_main(TestDistMnist2x2)