// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) #include "paddle/fluid/imperative/all_reduce.h" #ifdef PADDLE_WITH_NCCL #include #endif #ifdef PADDLE_WITH_RCCL #include #endif #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/selected_rows_utils.h" #include "paddle/fluid/framework/variable.h" #include "paddle/fluid/imperative/parallel_context.h" #include "paddle/fluid/platform/device/gpu/nccl_helper.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/string/string_helper.h" namespace paddle { namespace imperative { static const platform::Place &GetVarPlace(const framework::Variable &src) { if (src.IsType()) { return src.Get().place(); #if NCCL_VERSION_CODE >= 2212 } else if (src.IsType()) { return src.Get().value().place(); #endif } else { PADDLE_THROW(platform::errors::InvalidArgument( "Cannot get unsupported variable type %s for imperative allreduce, " "only " "LoDTensor and SelectedRows are supported.", platform::demangle(framework::ToTypeName(src.Type())))); } } static void AllReduce(const framework::Tensor &src, framework::Tensor *dst, const gpuStream_t stream, const platform::NCCLComm *comm) { const auto &place = src.place(); PADDLE_ENFORCE_EQ( platform::is_gpu_place(place), true, platform::errors::Unimplemented( "Imperative mode does not support multi-CPU training yet.")); const void *src_ptr = src.data(); dst->Resize(src.dims()); auto *dst_ptr = dst->mutable_data(src.place(), src.type()); auto nccl_dtype = platform::ToNCCLDataType(src.type()); PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce( src_ptr, dst_ptr, src.numel(), nccl_dtype, ncclSum, comm->comm(), stream)); } #if NCCL_VERSION_CODE >= 2212 static void AllReduce(const framework::SelectedRows &src, framework::SelectedRows *dst, const ParallelStrategy &strategy, const gpuStream_t stream, const platform::NCCLComm *comm) { VLOG(3) << "SelectedRows AllReduce start"; const auto &src_tensor = src.value(); const auto &place = src_tensor.place(); PADDLE_ENFORCE_EQ( platform::is_gpu_place(place), true, platform::errors::Unimplemented( "Imperative mode does not support multi-CPU training yet.")); auto dtype = src_tensor.type(); auto nccl_dtype = platform::ToNCCLDataType(dtype); auto *dev_ctx = static_cast( platform::DeviceContextPool::Instance().Get(place)); bool use_calc_stream = (dev_ctx->stream() == stream); // 1. Gather rows number from all workers. Here use ncclAllGather to do this, // but we can use other ways to implement is in the future const auto &src_rows = src.rows(); framework::Vector rows_num_vector(strategy.nranks_); rows_num_vector[strategy.local_rank_] = static_cast(src_rows.size()); // CUDAMutableData use CalStream auto *gpu_rows_num_ptr = rows_num_vector.CUDAMutableData(place); if (!use_calc_stream) { dev_ctx->Wait(); } PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllGather( gpu_rows_num_ptr + strategy.local_rank_, gpu_rows_num_ptr, 1, ncclInt64, comm->comm(), stream)); if (!use_calc_stream) { platform::GpuStreamSync(stream); } const auto *cpu_rows_num_ptr = rows_num_vector.data(); auto rows_num = std::accumulate(cpu_rows_num_ptr, cpu_rows_num_ptr + strategy.nranks_, static_cast(0)); dst->set_height(src.height()); VLOG(3) << "Gather rows: " << string::join_strings(rows_num_vector, ',') << ", total rows number: " << rows_num << ", height: " << src.height(); auto *dst_rows = dst->mutable_rows(); dst_rows->resize(rows_num); auto *dst_rows_ptr = dst_rows->CUDAMutableData(place); const auto *src_rows_ptr = src_rows.CUDAData(place); auto *dst_tensor = dst->mutable_value(); auto dims = src_tensor.dims(); dims[0] = rows_num; auto feature_size = framework::product(dims) / dims[0]; dst_tensor->Resize(dims); auto *dst_tensor_ptr = dst_tensor->mutable_data(place, dtype); const auto *src_tensor_ptr = src_tensor.data(); auto sizeof_dtype = framework::SizeOfType(dtype); int64_t row_offset = 0; if (!use_calc_stream) { dev_ctx->Wait(); } if (std::all_of(cpu_rows_num_ptr, cpu_rows_num_ptr + strategy.nranks_, [&](int64_t row) { return row == cpu_rows_num_ptr[0]; })) { // During sparse communication, the number of each card is same. // allgather is used to speed up the allreduce by replacing broadcast. auto row_sendcount = cpu_rows_num_ptr[0]; VLOG(3) << "allgather replaces broadcast to speed up in sparse allreduce"; PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllGather( src_rows_ptr, dst_rows_ptr, row_sendcount, ncclInt64, comm->comm(), stream)); auto value_sendcount = cpu_rows_num_ptr[0] * feature_size; PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllGather( src_tensor_ptr, dst_tensor_ptr, value_sendcount, nccl_dtype, comm->comm(), stream)); return; } for (int i = 0; i < strategy.nranks_; ++i) { if (cpu_rows_num_ptr[i] > 0) { // 2. Broadcast the rows of SelectedRows PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclBroadcast( src_rows_ptr, dst_rows_ptr + row_offset, cpu_rows_num_ptr[i], ncclInt64, i, comm->comm(), stream)); // 3. Broadcast the tensor data of SelectedRows auto *dst_tensor_ptr_i = reinterpret_cast(dst_tensor_ptr) + row_offset * feature_size * sizeof_dtype; PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclBroadcast( src_tensor_ptr, dst_tensor_ptr_i, cpu_rows_num_ptr[i] * feature_size, nccl_dtype, i, comm->comm(), stream)); row_offset += cpu_rows_num_ptr[i]; } } VLOG(3) << "Original SelectedRows rows: " << string::join_strings(src_rows, ','); VLOG(3) << "Result SelectedRows rows: " << string::join_strings(*dst_rows, ','); } #endif void AllReduce(const framework::Variable &src, framework::Variable *dst, const ParallelStrategy &strategy, int ring_id, bool use_calc_stream) { const auto &place = GetVarPlace(src); auto *dev_ctx = static_cast( platform::DeviceContextPool::Instance().Get(place)); platform::NCCLComm *comm = platform::NCCLCommContext::Instance().Get(ring_id, place); gpuStream_t stream = (use_calc_stream ? dev_ctx->stream() : comm->stream()); if (src.IsType()) { if (!dst->IsType()) { dst->Clear(); } AllReduce(src.Get(), dst->GetMutable(), stream, comm); #if NCCL_VERSION_CODE >= 2212 } else if (src.IsType()) { if (&src != dst) { if (!dst->IsType()) { dst->Clear(); } AllReduce(src.Get(), dst->GetMutable(), strategy, stream, comm); } else { // SelectedRows cannot be allreduce in-place framework::Variable tmp_dst; AllReduce(src.Get(), tmp_dst.GetMutable(), strategy, stream, comm); // stream must synchronize to ensure accuracy of the move operation platform::GpuStreamSync(stream); *dst = std::move(tmp_dst); } #endif } else { PADDLE_THROW(platform::errors::InvalidArgument( "Unsupported variable type %s for imperative allreduce, only " "LoDTensor and SelectedRows are supported.", platform::demangle(framework::ToTypeName(src.Type())))); } } void AllReduce(const framework::Variable &src, framework::Variable *dst, const ParallelStrategy &strategy) { AllReduce(src, dst, strategy, 0, true); } } // namespace imperative } // namespace paddle #endif