# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from __future__ import division import numpy as np from .dataset import Dataset __all__ = ["BatchSampler"] class BatchSampler(object): """ A base implement of batch sampler used by `paddle.io.DataLoader` which yield mini-batch indices(a list/tuple with length as mini-batch size and holds sample indices) iterably. Batch sampler used by :code:`paddle.io.DataLoader` should be a subclass of :code:`paddle.io.BatchSampler`, BatchSampler subclasses should implement following methods: :code:`__iter__`: return mini-batch indices iterably. :code:`__len__`: get mini-batch number in an epoch. Args: dataset(Dataset): this could be a :code:`paddle.io.Dataset` implement or other python object which implemented :code:`__len__` for BatchSampler to get indices as the range of :attr:`dataset` length. Default None. indices (list|tuple): a substitution parameter for :attr:`dataset` either :attr:`dataset` or :attr:`indices` should be set, give the whole indices to sampler from directly. Default None. shuffle(bool): whether to shuffle indices order before genrating batch indices. Default False. batch_size(int): sample indice number in a mini-batch indices. drop_last(bool): whether drop the last incomplete batch dataset size is not divisible by the batch size. Default False Returns: BatchSampler: an iterable object for indices iterating Examples: .. code-block:: python from paddle.io import BatchSampler, Dataset # init with indices bs = BatchSampler(indices=list(range(100)), shuffle=True, batch_size=8, drop_last=True) for batch_indices in bs: print(batch_indices) # init with dataset class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([784]).astype('float32') label = np.random.randint(0, 9, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples bs = BatchSampler(dataset=RandomDataset(100), shuffle=False, batch_size=16, drop_last=False) for batch_indices in bs: print(batch_indices) see `paddle.io.DataLoader` """ def __init__(self, dataset=None, indices=None, shuffle=False, batch_size=1, drop_last=False): if dataset is None: assert indices is not None, \ "either dataset or indices should be set" assert isinstance(indices, list) or isinstance(indices, tuple), \ "indices should be a list or tuple, but got {}".format(type(indices)) self.indices = indices else: assert isinstance(dataset, Dataset), \ "dataset should be an instance of paddle.io.Dataset" assert indices is None, \ "should not set both dataset and indices" self.indices = list(range(len(dataset))) assert isinstance(batch_size, int) and batch_size > 0, \ "batch_size should be a positive integer, but got {}".format(batch_size) self.batch_size = batch_size assert isinstance(shuffle, bool), \ "shuffle should be a boolean value, but got {}".format(type(shuffle)) self.shuffle = shuffle assert isinstance(drop_last, bool), \ "drop_last should be a boolean value, but got {}".format(type(drop_last)) self.drop_last = drop_last def __iter__(self): if self.shuffle: np.random.shuffle(self.indices) _iter = iter(self.indices) batch_indices = [] for idx in _iter: batch_indices.append(idx) if len(batch_indices) == self.batch_size: yield batch_indices batch_indices = [] if not self.drop_last and len(batch_indices) > 0: yield batch_indices def __len__(self): num_samples = len(self.indices) num_samples += int(not self.drop_last) * (self.batch_size - 1) return num_samples // self.batch_size