# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from paddle import fluid from .meta_optimizer_base import MetaOptimizerBase class ParameterServerOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super(ParameterServerOptimizer, self).__init__(optimizer) self.inner_opt = optimizer # we do not allow meta optimizer to be inner optimizer currently self.meta_optimizers_white_list = [] def _is_graph_out(self): return False def _can_apply(self): if self.role_maker._is_collective: return False k_steps = self.user_defined_strategy.a_sync_configs["k_steps"] return True if k_steps >= 0 else False def _get_distributed_strategy(self): from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory k_steps = self.user_defined_strategy.a_sync_configs["k_steps"] strategy = None if not self.user_defined_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_sync_strategy() if self.user_defined_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_async_strategy() if self.user_defined_strategy.a_sync and k_steps > 0: strategy = StrategyFactory.create_geo_strategy(k_steps) if not strategy: raise ValueError("k_steps must be invalid value, please check") return strategy def _build_trainer_programs(self, compiled_config): from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker _main = compiled_config.origin_main_program.clone() _startup = compiled_config.origin_startup_program.clone() if not compiled_config.is_geo_mode(): # for main program _main = worker.delete_optimizer_pass(_main, compiled_config) _main = worker.distributed_ops_pass(_main, compiled_config) _main = worker.append_send_ops_pass(_main, compiled_config) # for startup program _startup = worker.fake_init_ops_pass(_startup, compiled_config) _startup = worker.init_from_server_pass(_startup, compiled_config) _startup = worker.delet_extra_optimizes_pass(_startup, compiled_config) # for heter program if self.role_maker._is_heter_parameter_server_mode: from paddle.fluid.incubate.fleet.parameter_server.ir import heter_trainer_pass as heter_worker if self.role_maker._is_heter_worker(): # for heter worker _main = heter_worker.split_heter_worker_ops_pass( _main, compiled_config) else: # for default worker _main = heter_worker.split_trainer_ops_pass(_main, compiled_config) # for startup change _startup = heter_worker.delete_startup_useless_ops_var_pass( _startup, _main, compiled_config) else: _main = worker.append_send_ops_pass(_main, compiled_config) _startup = _startup return _main, _startup def _build_pserver_programs(self, compiled_config): from paddle.fluid.incubate.fleet.parameter_server.ir import pserver_pass as server _main = fluid.Program() _startup = fluid.Program() if not compiled_config.is_geo_mode(): _main = server.add_listen_and_serv_pass(_main, compiled_config) _main = server.add_rpc_global_flags_pass(_main, compiled_config) _main = server.add_optimizer_pass(_main, compiled_config) _main = server.large_scale_sparse_pass(_main, _main, compiled_config, False) _startup = server.build_pserver_startup_program_pass( _startup, _main, compiled_config) _startup = server.large_scale_sparse_pass(_startup, _main, compiled_config, True) if not compiled_config.is_sync_mode(): _main = server.delete_unused_in_main_pass(_main, compiled_config) _startup = server.delete_unused_in_startup_pass(_startup, _main, compiled_config) else: _main = server.add_listen_and_serv_pass(_main, compiled_config) _main = server.add_rpc_global_flags_pass(_main, compiled_config) _main = server.add_geo_optimizer_pass(_main, compiled_config) _main = server.large_scale_sparse_pass(_main, _main, compiled_config, False) _startup = server.build_pserver_startup_program_pass( _startup, _main, compiled_config) _startup = server.large_scale_sparse_pass(_startup, _main, compiled_config, True) _startup = server.delete_unused_in_startup_pass(_startup, _main, compiled_config) return _main, _startup def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): self.inner_opt.minimize(loss, startup_program, parameter_list, no_grad_set) strategy = self._get_distributed_strategy() _origin_main_program = loss.block.program _origin_startup_program = startup_program from paddle.fluid.incubate.fleet.parameter_server.ir import public as public compiled_config = public.CompileTimeStrategy(_origin_main_program, _origin_startup_program, strategy, self.role_maker) if self.role_maker.is_worker() or self.role_maker._is_heter_worker(): main_program, startup_program = self._build_trainer_programs( compiled_config) elif self.role_maker.is_server(): main_program, startup_program = self._build_pserver_programs( compiled_config) loss.block.program = main_program fluid.framework.switch_startup_program(startup_program) return None, None def _disable_strategy(self, dist_strategy): self.user_defined_strategy.a_sync_configs = {}