/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include "paddle/fluid/operators/jit/kernel_base.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace operators { namespace jit { namespace more { namespace mkl { template void MatMul(const T* a, const T* b, T* c, const matmul_attr_t* attr); template void VMul(const T* x, const T* y, T* z, int n); template void VAdd(const T* x, const T* y, T* z, int n); template void VScal(const T* a, const T* x, T* y, int n); template void VExp(const T* x, T* y, int n); template void VSquare(const T* x, T* y, int n); template void VCopy(const T* x, T* y, int n); template void VAXPY(T a, const T* x, T* y, int n); template void VSigmoid(const T* x, T* y, int n) { const T min = SIGMOID_THRESHOLD_MIN; const T max = SIGMOID_THRESHOLD_MAX; for (int i = 0; i < n; ++i) { y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]); y[i] = static_cast(0) - y[i]; } VExp(y, y, n); for (int i = 0; i < n; ++i) { y[i] = static_cast(1) / (static_cast(1) + y[i]); } } template void VTanh(const T* x, T* y, int n) { for (int i = 0; i < n; ++i) { y[i] = static_cast(2) * x[i]; } VSigmoid(y, y, n); for (int i = 0; i < n; ++i) { y[i] = static_cast(2) * y[i] - static_cast(1); } } template void SeqPool(const T* x, T* y, const seq_pool_attr_t* attr) { VCopy(x, y, attr->w); for (int h = 1; h != attr->h; ++h) { VAXPY(static_cast(1), x + h * attr->w, y, attr->w); } if (attr->type == SeqPoolType::kAvg || attr->type == SeqPoolType::kSqrt) { T scalar = static_cast(1); if (attr->type == SeqPoolType::kAvg) { scalar = scalar / static_cast(attr->h); } else { scalar = scalar / std::sqrt(static_cast(attr->h)); } VScal(&scalar, y, y, attr->w); } } template void EmbSeqPool(const T* table, const int64_t* idx, T* out, const emb_seq_pool_attr_t* attr) { PADDLE_ENFORCE_EQ(attr->table_width * attr->index_width, attr->out_width); auto check_idx_value_valid = [&](int64_t i) { PADDLE_ENFORCE_LT(idx[i], attr->table_height, "idx value: %d, i: %d", idx[i], i); PADDLE_ENFORCE_GE(idx[i], 0, "idx value: %d, i: %d", idx[i], i); }; for (int64_t w = 0; w != attr->index_width; ++w) { check_idx_value_valid(w); VCopy(table + idx[w] * attr->table_width, out + w * attr->table_width, attr->table_width); } for (int64_t h = 1; h < attr->index_height; ++h) { for (int64_t w = 0; w < attr->index_width; ++w) { int64_t i = h * attr->index_width + w; check_idx_value_valid(i); VAXPY(static_cast(1), table + idx[i] * attr->table_width, out + w * attr->table_width, attr->table_width); } } } template void ASum(const T* x, T* res, int n); template void Softmax(const T* x, T* y, int n, int bs) { std::vector entities(bs); for (int i = 0; i < bs; ++i) { entities[i] = x[i * n]; for (int c = 1; c < n; ++c) { entities[i] = x[i * n + c] > entities[i] ? x[i * n + c] : entities[i]; } for (int c = 0; c < n; ++c) { y[i * n + c] = x[i * n + c] - entities[i]; } } VExp(y, y, n * bs); for (int i = 0; i < bs; ++i) { T sum; ASum(&y[i * n], &sum, n); sum = static_cast(1) / sum; VScal(&sum, &y[i * n], &y[i * n], n); } } template void Sgd(const T* lr, const T* param, const T* grad, const int64_t* rows, T* out, const sgd_attr_t* attr) { PADDLE_ENFORCE_EQ(attr->param_width, attr->grad_width); PADDLE_ENFORCE_LE(attr->selected_rows_size, attr->grad_height); T scalar = -lr[0]; int width = attr->grad_width; if (out == param) { for (int64_t i = 0; i < attr->selected_rows_size; ++i) { auto h_idx = rows[i]; PADDLE_ENFORCE_LT(h_idx, attr->param_height); PADDLE_ENFORCE_GE(h_idx, 0); VAXPY(scalar, grad + i * width, out + h_idx * width, width); } } else { for (int64_t i = 0; i < attr->selected_rows_size; ++i) { auto h_idx = rows[i]; PADDLE_ENFORCE_LT(h_idx, attr->param_height); PADDLE_ENFORCE_GE(h_idx, 0); VScal(&scalar, grad + i * width, out + h_idx * width, width); VAdd(param + h_idx * width, out + h_idx * width, out + h_idx * width, width); } } } #define DECLARE_MKL_KERNEL(name, tuples) \ template \ class name##Kernel : public KernelMore> { \ public: \ name##Kernel() { this->func = name; } \ bool UseMe(const typename tuples::attr_type&) const override; \ const char* ImplType() const override { return "MKL"; } \ } // ABCMNK DECLARE_MKL_KERNEL(MatMul, MatMulTuples); // XYZN DECLARE_MKL_KERNEL(VMul, XYZNTuples); DECLARE_MKL_KERNEL(VAdd, XYZNTuples); // AXYN DECLARE_MKL_KERNEL(VScal, AXYNTuples); // XYN DECLARE_MKL_KERNEL(VExp, XYNTuples); DECLARE_MKL_KERNEL(VSigmoid, XYNTuples); DECLARE_MKL_KERNEL(VTanh, XYNTuples); DECLARE_MKL_KERNEL(VSquare, XYNTuples); DECLARE_MKL_KERNEL(SeqPool, SeqPoolTuples); DECLARE_MKL_KERNEL(EmbSeqPool, EmbSeqPoolTuples); DECLARE_MKL_KERNEL(Softmax, SoftmaxTuples); DECLARE_MKL_KERNEL(Sgd, SgdTuples); #undef DECLARE_MKL_KERNEL } // namespace mkl } // namespace more } // namespace jit } // namespace operators } // namespace paddle