// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/pten/common/scalar.h" #include "paddle/pten/core/dense_tensor.h" #include "paddle/pten/infermeta/multiary.h" #include "paddle/pten/kernels/empty_kernel.h" namespace pten { template void ConcatKernel(const Context& dev_ctx, const std::vector& x, const Scalar& axis, DenseTensor* out); template DenseTensor Concat(const Context& dev_ctx, const std::vector& x, const Scalar& axis) { std::vector meta_x; for (const auto& t : x) { meta_x.emplace_back(t); } auto dense_out = pten::Empty(dev_ctx); MetaTensor meta_out(&dense_out); ConcatInferMeta(meta_x, axis.to(), &meta_out, /*is_runtime=*/true); ConcatKernel(dev_ctx, x, axis, &dense_out); return dense_out; } } // namespace pten