/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/var_type.h" #include "paddle/fluid/operators/assign_op.h" namespace paddle { namespace operators { using framework::GradVarName; #define CLOG std::cout const char kForward[] = "FORWARD"; const char kBackward[] = "BACKWARD"; const char kBoth[] = "BOTH"; class LogGuard { public: inline LogGuard() { LogMutex().lock(); } inline ~LogGuard() { LogMutex().unlock(); } private: static std::mutex &LogMutex() { static std::mutex mtx; return mtx; } }; struct Formater { std::string message; std::string name; std::vector dims; std::type_index dtype{typeid(const char)}; framework::LoD lod; int summarize; void *data{nullptr}; platform::Place place; std::stringstream logs; void operator()(size_t size) { PrintMessage(); PrintPlaceInfo(); PrintName(); PrintDims(); PrintDtype(); PrintLod(); PrintData(size); LogGuard guard; CLOG << logs.str(); } private: void PrintPlaceInfo() { logs << "The place is:" << place << std::endl; } void PrintMessage() { logs << std::time(nullptr) << "\t" << message << "\t"; } void PrintName() { if (!name.empty()) { logs << "Tensor[" << name << "]" << std::endl; } } void PrintDims() { if (!dims.empty()) { logs << "\tshape: ["; for (auto i : dims) { logs << i << ","; } logs << "]" << std::endl; } } void PrintDtype() { if (!framework::IsType(dtype)) { logs << "\tdtype: " << dtype.name() << std::endl; } } void PrintLod() { if (!lod.empty()) { logs << "\tLoD: ["; for (auto level : lod) { logs << "[ "; for (auto i : level) { logs << i << ","; } logs << " ]"; } logs << "]" << std::endl; } } void PrintData(size_t size) { PADDLE_ENFORCE_NOT_NULL(data); // print float if (framework::IsType(dtype)) { Display(size); } else if (framework::IsType(dtype)) { Display(size); } else if (framework::IsType(dtype)) { Display(size); } else if (framework::IsType(dtype)) { Display(size); } else if (framework::IsType(dtype)) { Display(size); } else { logs << "\tdata: unprintable type: " << dtype.name() << std::endl; } } template void Display(size_t size) { auto *d = reinterpret_cast(data); logs << "\tdata: "; if (summarize != -1) { summarize = std::min(size, (size_t)summarize); for (int i = 0; i < summarize; i++) { logs << d[i] << ","; } } else { for (size_t i = 0; i < size; i++) { logs << d[i] << ","; } } logs << std::endl; } }; // TODO(ChunweiYan) there should be some other printers for TensorArray class PrintOp : public framework::OperatorBase { public: PrintOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} private: void RunImpl(const framework::Scope &scope, const platform::Place &place) const override { const auto in_var = scope.FindVar(Input("In")); auto out_var = scope.FindVar(Output("Out")); PADDLE_ENFORCE_NOT_NULL(in_var, "The input should not be found in scope", Input("In")); PADDLE_ENFORCE_NOT_NULL(out_var, "The output should not be found in scope", Output("Out")); auto &in_tensor = in_var->Get(); framework::LoDTensor *out_tensor = out_var->GetMutable(); PrintValue(place, Inputs("In").front(), in_tensor); framework::TensorCopy(in_tensor, place, out_tensor); out_tensor->set_lod(in_tensor.lod()); } void PrintValue(const platform::Place &place, const std::string &printed_var_name, const framework::LoDTensor &in_tensor) const { std::string print_phase = Attr("print_phase"); bool is_forward = Attr("is_forward"); if ((is_forward && print_phase == kBackward) || (!is_forward && print_phase == kForward)) { return; } int first_n = Attr("first_n"); if (first_n > 0 && ++times_ > first_n) return; framework::LoDTensor printed_tensor; printed_tensor.set_lod(in_tensor.lod()); printed_tensor.Resize(in_tensor.dims()); if (is_cpu_place(in_tensor.place())) { printed_tensor.ShareDataWith(in_tensor); } else { // copy data to cpu to print platform::CPUPlace place; TensorCopy(in_tensor, place, &printed_tensor); } Formater formater; formater.place = place; formater.message = Attr("message"); if (Attr("print_tensor_name")) { formater.name = printed_var_name; } if (Attr("print_tensor_type")) { formater.dtype = framework::ToTypeIndex(printed_tensor.type()); } if (Attr("print_tensor_shape")) { auto &dims = printed_tensor.dims(); formater.dims.resize(dims.size()); for (int i = 0; i < dims.size(); ++i) formater.dims[i] = dims[i]; } if (Attr("print_tensor_lod")) { formater.lod = printed_tensor.lod(); } formater.summarize = Attr("summarize"); formater.data = reinterpret_cast(printed_tensor.data()); formater(printed_tensor.numel()); } private: mutable int times_{0}; }; class PrintOpProtoAndCheckMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("In", "Input tensor to be displayed."); AddOutput("Out", "The output tensor."); AddAttr("first_n", "Only log `first_n` number of times."); AddAttr("message", "A string message to print as a prefix."); AddAttr("summarize", "Number of elements printed."); AddAttr("print_tensor_name", "Whether to print the tensor name."); AddAttr("print_tensor_type", "Whether to print the tensor's dtype."); AddAttr("print_tensor_shape", "Whether to print the tensor's shape."); AddAttr("print_tensor_lod", "Whether to print the tensor's lod."); AddAttr("print_phase", "(string, default 'FORWARD') Which phase to display " "including 'FORWARD' " "'BACKWARD' and 'BOTH'.") .SetDefault(std::string(kBoth)) .InEnum({std::string(kForward), std::string(kBackward), std::string(kBoth)}); AddAttr("is_forward", "Whether is forward or not").SetDefault(true); AddComment(R"DOC( Creates a print op that will print when a tensor is accessed. Wraps the tensor passed in so that whenever that a tensor is accessed, the message `message` is printed, along with the current value of the tensor `t`.)DOC"); } }; class PrintOpInferShape : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { VLOG(10) << "PrintOpInferShape"; PADDLE_ENFORCE(ctx->HasInput("In"), "Input(In) should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null."); ctx->ShareDim("In", /*->*/ "Out"); ctx->ShareLoD("In", /*->*/ "Out"); } }; class PrintOpVarTypeInference : public framework::VarTypeInference { public: void operator()(framework::InferVarTypeContext *ctx) const override { auto input_type = ctx->GetType(ctx->Input("In")[0]); auto out_name = ctx->Output("Out").front(); ctx->SetType(out_name, input_type); } }; template class PrintOpGradientMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; void Apply(GradOpPtr op_desc_ptr) const override { op_desc_ptr->SetType("print"); op_desc_ptr->SetInput("In", this->OutputGrad("Out")); op_desc_ptr->SetOutput("Out", this->InputGrad("In")); op_desc_ptr->SetAttrMap(this->Attrs()); op_desc_ptr->SetAttr("is_forward", false); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(print, ops::PrintOp, ops::PrintOpProtoAndCheckMaker, ops::PrintOpGradientMaker, ops::PrintOpGradientMaker, ops::PrintOpInferShape, ops::PrintOpVarTypeInference);