# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid as fluid import paddle.fluid.dygraph as dygraph from paddle.fluid.framework import _test_eager_guard import paddle class TestImperativeLayerTrainable(unittest.TestCase): def func_set_trainable(self): with fluid.dygraph.guard(): label = np.random.uniform(-1, 1, [10, 10]).astype(np.float32) label = dygraph.to_variable(label) linear = paddle.nn.Linear(10, 10) y = linear(label) self.assertFalse(y.stop_gradient) linear.weight.trainable = False linear.bias.trainable = False self.assertFalse(linear.weight.trainable) self.assertTrue(linear.weight.stop_gradient) y = linear(label) self.assertTrue(y.stop_gradient) with self.assertRaises(ValueError): linear.weight.trainable = "1" def test_set_trainable(self): with _test_eager_guard(): self.func_set_trainable() self.func_set_trainable() if __name__ == '__main__': unittest.main()