# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re PREFIX_TENSOR_NAME = 'dense_' PREFIX_META_TENSOR_NAME = 'meta_' class BaseAPI(object): def __init__(self, api_item_yaml): self.api = self.get_api_name(api_item_yaml) # inputs: # names : [], list of input names # input_info : {input_name : type} # attrs: # names : [], list of attribute names # attr_info : { attr_name : (type, default_values)} # outputs: # names : [], list of output names # types : [], list of output types # return_type : Tensor, vector, ..., the return type of api # args_str: # args_declare : "str" // str of funtion params with default value. Example: (..., bool flag=false) # args_define : "str" // str of funtion params without default value. Example: (..., bool flag) self.inputs, self.attrs, self.outputs, self.args_str = self.parse_args( self.api, api_item_yaml) self.is_base_api = True if 'invoke' in api_item_yaml: self.is_base_api = False self.invoke = api_item_yaml['invoke'] else: self.kernel = api_item_yaml['kernel'] if 'backend' not in self.kernel or len(self.kernel['backend']) == 0: self.kernel['backend'] = None if 'layout' not in self.kernel or len(self.kernel['layout']) == 0: self.kernel['layout'] = None if 'data_type' not in self.kernel or len(self.kernel[ 'data_type']) == 0: self.kernel['data_type'] = None if 'param' not in self.kernel: self.kernel['param'] = None self.infer_meta = api_item_yaml['infer_meta'] if 'param' not in self.infer_meta: self.infer_meta['param'] = None self.data_transform = { 'skip_transform': [], 'support_trans_dtype': [] } if 'data_transform' in api_item_yaml: if 'skip_transform' in api_item_yaml['data_transform']: self.data_transform['skip_transform'] = api_item_yaml[ 'data_transform']['skip_transform'] if 'support_trans_dtype' in api_item_yaml['data_transform']: self.data_transform['support_trans_dtype'] = api_item_yaml[ 'data_transform']['support_trans_dtype'] def get_api_name(self, api_item_yaml): return api_item_yaml['api'] def parse_args(self, api_name, api_item_yaml): inputs, attrs, args_str = self.parse_input_and_attr( api_name, api_item_yaml['args']) output_type_list, output_names, return_type = self.parse_output( api_name, api_item_yaml['output']) return inputs, attrs, { 'names': output_names, 'types': output_type_list, 'return_type': return_type }, args_str def parse_input_and_attr(self, api_name, args_config): inputs = {'names': [], 'input_info': {}} attrs = {'names': [], 'attr_info': {}} args_str = args_config.strip() assert args_str.startswith('(') and args_str.endswith(')'), \ f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml." args_str = args_str[1:-1] args_list = args_str.split(',') input_types = [ 'const Tensor&', 'const Tensor &', 'const std::vector&', 'const std::vector &' ] attr_types = ['const Scalar&', 'const Scalar &', 'const ScalarArray&', 'const ScalarArray &', \ 'int', 'int32_t', 'int64_t', 'size_t', 'float', 'double', 'bool', \ 'const std::vector&', 'Backend', 'DataLayout', 'DataType'] args_declare_str = "" args_define_str = "" for item in args_list: item = item.strip() # match the input tensor has_input = False for in_type in input_types: if item.startswith(in_type): input_name = item[len(in_type):].strip() assert len(input_name) > 0, \ f"The input tensor name should not be empty. Please check the args of {api_name} in yaml." assert len(attrs['names']) == 0, \ f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml" inputs['names'].append(input_name) inputs['input_info'][input_name] = in_type args_declare_str = args_declare_str + in_type + ' ' + input_name + ', ' args_define_str = args_define_str + in_type + ' ' + input_name + ', ' has_input = True break if has_input: continue # match the attribute for attr_type in attr_types: if item.startswith(attr_type): attr_name = item[len(attr_type):].strip() assert len(attr_name) > 0, \ f"The attribute name should not be empty. Please check the args of {api_name} in yaml." default_value = None if '=' in attr_name: attr_infos = attr_name.split('=') attr_name = attr_infos[0].strip() default_value = attr_infos[1].strip() default_value_str = "" if default_value is None else '=' + default_value args_declare_str = args_declare_str + attr_type + ' ' + attr_name + default_value_str + ', ' args_define_str = args_define_str + attr_type + ' ' + attr_name + ', ' attrs['names'].append(attr_name) attrs['attr_info'][attr_name] = (attr_type, default_value) break return inputs, attrs, { 'args_declare': args_declare_str[:-2], 'args_define': args_define_str[:-2] } def parse_output(self, api_name, output_config): def parse_output_item(output_item): alllowd_output_types = ['Tensor', 'std::vector'] if re.search(r'\(\w*\)', output_item): result = re.search( r"(?P[a-zA-Z0-9_<>]+)\s*\((?P\w+)\)", output_item) out_type = result.group('out_type') assert out_type in alllowd_output_types, \ f"{api_name} : Output type error: the output type only support Tensor and std::vector, \ but now is {out_type}." return out_type, result.group('name') else: if output_item.strip() in alllowd_output_types: return output_item.strip(), 'out' else: raise ValueError( "{} : Output type error: the output type only support Tensor and std::vector, \ but now is {}.".format(api_name, out_type)) temp_list = output_config.split(',') if len(temp_list) == 1: out_type, out_name = parse_output_item(temp_list[0]) return [out_type], [out_name], self.get_return_type([out_type]) else: out_type_list = [] out_name_list = [] for output_item in temp_list: out_type, out_name = parse_output_item(output_item) out_type_list.append(out_type) out_name_list.append(out_name) return out_type_list, out_name_list, self.get_return_type( out_type_list) # Override by child class def get_return_type(self, out_type_list): return None def gene_api_declaration(self): api_declaration = f""" PADDLE_API {self.outputs['return_type']} {self.api}({self.args_str['args_declare']}); """ return api_declaration def gene_kernel_select(self) -> str: api = self.api input_names = self.inputs['names'] attrs = self.attrs kernel = self.kernel kernel_key_item_init = """ Backend kernel_backend = Backend::UNDEFINED; DataLayout kernel_layout = DataLayout::UNDEFINED; DataType kernel_data_type = DataType::UNDEFINED; """ # Check the tensor options attr_backend_count = 0 attr_layout_count = 0 attr_data_type_count = 0 for attr_name in attrs['names']: if attrs['attr_info'][attr_name][0] == 'Backend': assert kernel['backend'] is not None, \ f"{api} api: When there is a parameter with 'Backend' type in attributes, you must set backend of kernel manually." attr_backend_count = attr_backend_count + 1 if attrs['attr_info'][attr_name][0] == 'DataLayout': assert kernel['layout'] is not None, \ f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually." attr_layout_count = attr_layout_count + 1 if attrs['attr_info'][attr_name][0] == 'DataType': assert kernel['data_type'] is not None, \ f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually." attr_data_type_count = attr_data_type_count + 1 # preprocess kernel configures kernel_select_code = "" if kernel['backend'] is not None: if '>' in kernel['backend']: vars_list = kernel['backend'].split('>') assert len( vars_list ) == 2, f"{api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}." assert (vars_list[0].strip() in attrs['names']) and (attrs['attr_info'][vars_list[0].strip()][0] == 'Backend'), \ f"{api} api: When use '>' to set kernel backend, the first param should be a attribute with Backend type." kernel_select_code = kernel_select_code + f""" kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ else: args_str = "" for ele in kernel['backend'].split(','): args_str = args_str + ele.strip() + ', ' kernel_select_code = kernel_select_code + f""" kernel_backend = ParseBackend({args_str[:-2]}); """ if kernel['layout'] is not None: if '>' in kernel['layout']: vars_list = kernel['layout'].split('>') assert len( vars_list ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}." assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \ f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type." kernel_select_code = kernel_select_code + f""" kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ else: vars_list = kernel['layout'].split(',') assert len( vars_list ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}." kernel_select_code = kernel_select_code + f""" kernel_layout = ParseLayout({vars_list[0].strip()}); """ if kernel['data_type'] is not None: if '>' in kernel['data_type']: vars_list = kernel['data_type'].split('>') assert len( vars_list ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}." assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \ f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type." kernel_select_code = kernel_select_code + f""" kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ else: vars_list = kernel['data_type'].split(',') assert len( vars_list ) == 1, f"{api} api: The number of params to set data_type only allows 2, but received {len(vars_list)}." kernel_select_code = kernel_select_code + f""" kernel_data_type = ParseDataType({vars_list[0].strip()}); """ if len(input_names) == 0: assert attr_backend_count > 0 and attr_layout_count > 0 and attr_data_type_count > 0, \ f"{api} api: When there is no input tensor, the args must have 'Backend', 'DataLayout' and 'DataType'." kernel_select_args = "" for input_name in input_names: kernel_select_args = kernel_select_args + input_name + ", " if len(kernel_select_args) > 2: kernel_select_args = kernel_select_args[:-2] kernel_select_code = kernel_key_item_init + kernel_select_code if len(input_names) > 0: kernel_select_code = kernel_select_code + f""" if (kernel_backend == Backend::UNDEFINED || kernel_layout == DataLayout::UNDEFINED || kernel_data_type == DataType::UNDEFINED ) {{ auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args}); auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey(); if (kernel_backend == Backend::UNDEFINED) {{ kernel_backend = kernel_key.backend(); }} if (kernel_layout == DataLayout::UNDEFINED) {{ kernel_layout = kernel_key.layout(); }} if (kernel_data_type == DataType::UNDEFINED) {{ kernel_data_type = kernel_key.dtype(); }} }}""" kernel_select_code = kernel_select_code + f""" auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError( "{kernel['func']}", {{kernel_backend, kernel_layout, kernel_data_type}}); VLOG(6) << "{api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]"; VLOG(6) << "{api} API kernel: " << kernel;""" return kernel_select_code def gene_infer_meta(self, kernel_output_names) -> str: input_names = self.inputs['names'] attr_names = self.attrs['names'] infer_meta = self.infer_meta infer_meta_params = infer_meta[ 'param'] + kernel_output_names if infer_meta[ 'param'] is not None else input_names + attr_names + kernel_output_names # generate meta tensors meta_tensor_code = "" param_code = "" for param in infer_meta_params: if param in input_names: param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), " elif param in kernel_output_names: meta_tensor_code = meta_tensor_code + " pten::MetaTensor " + param.replace( PREFIX_TENSOR_NAME, PREFIX_META_TENSOR_NAME) + "(" + param + ");\n" param_code = param_code + "&" + param.replace( PREFIX_TENSOR_NAME, PREFIX_META_TENSOR_NAME) + ", " elif param in attr_names: param_code = param_code + param + ", " elif isinstance(param, str): param_code = param_code + "\"" + param + "\", " elif isinstance(param, bool): param_code = param_code + str(param).lower() + ", " else: param_code = param_code + str(param) + ", " param_code = param_code[:-2] return f"""{meta_tensor_code} pten::{infer_meta['func']}({param_code}); """ def get_kernel_args(self): input_trans_map = { 'const Tensor&': 'const pten::DenseTensor&', 'const Tensor &': 'const pten::DenseTensor&', 'const std::vector&': 'const std::vector&', 'const std::vector &': 'const std::vector&' } out_trans_map = { 'Tensor': 'pten::DenseTensor*', 'std::vector': 'std::vector&' } input_names = self.inputs['names'] input_infos = self.inputs['input_info'] kernel_args_type_list = ['const platform::DeviceContext&'] attr_names = self.attrs['names'] kernel_param = self.kernel['param'] if kernel_param is None: kernel_param = input_names + attr_names input_tensor_code = "" for i, input_name in enumerate(input_names): # set input code if input_name in kernel_param: trans_flag = "{}" if input_name in self.data_transform['skip_transform']: trans_flag = "{true}" elif input_name in self.data_transform['support_trans_dtype']: trans_flag = "{false, true}" input_tensor_code = input_tensor_code + f""" auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});""" else: input_tensor_code = input_tensor_code + f""" auto {PREFIX_TENSOR_NAME}{input_name} = TensorToDenseTensor({input_name});""" kernel_args = "*dev_ctx, " for param in kernel_param: if param in input_names: kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", " kernel_args_type_list.append(input_trans_map[input_infos[ param]]) elif param in attr_names: # set attr for kernel_context if 'ScalarArray' in self.attrs['attr_info'][param][0]: kernel_args_type_list.append('const pten::ScalarArray&') param = 'pten::ScalarArray(' + param + ')' elif 'Scalar' in self.attrs['attr_info'][param][0]: kernel_args_type_list.append('const pten::Scalar&') param = 'pten::Scalar(' + param + ')' else: kernel_args_type_list.append(self.attrs['attr_info'][param][ 0]) kernel_args = kernel_args + param + ", " elif isinstance(param, bool): kernel_args = kernel_args + str(param).lower() + ", " else: kernel_args = kernel_args + str(param) + ", " for out_type in self.outputs['types']: kernel_args_type_list.append(out_trans_map[out_type]) kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")" return input_tensor_code, kernel_args[:-2], kernel_signature # Override by child class def gene_output(self, output_type_list): return None, None, None def gene_api_code(self): if self.is_base_api: input_tensors, kernel_args, kernel_signature = self.get_kernel_args( ) outputs_args, kernel_output_names, output_create = self.gene_output( self.outputs['types']) return f""" PADDLE_API {self.outputs['return_type']} {self.api}({self.args_str["args_define"]}) {{ {self.gene_kernel_select()} auto* dev_ctx = GetDeviceContextByBackend(kernel_backend); {input_tensors} {output_create} {self.gene_infer_meta(kernel_output_names)} using kernel_signature = {kernel_signature}; auto* kernel_fn = kernel.GetVariadicKernelFn(); (*kernel_fn)({kernel_args}, {outputs_args}); return out; }} """ else: inveke_func_name = self.invoke.split('(')[0].strip() if inveke_func_name in self.attrs['names']: # Adjust the param whose name is same with api invoked. pattern = r'\W' + inveke_func_name + '[^A-Za-z0-9_(]' def adjust_name(matched): matched_str = matched.group() return matched_str[0:-1] + '_val' + matched_str[-1] invoke_code = re.sub(pattern, adjust_name, self.invoke) params_code = re.sub(pattern, adjust_name, self.args_str["args_define"]) else: invoke_code = self.invoke params_code = self.args_str["args_define"] return f""" {self.outputs['return_type']} {self.api}({params_code}) {{ return {invoke_code}; }} """