// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "paddle/fluid/lite/api/cxx_api.h" #include "paddle/fluid/lite/core/mir/use_passes.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/lite/kernels/use_kernels.h" #include "paddle/fluid/lite/operators/use_ops.h" // for eval DEFINE_string(model_dir, "", ""); namespace paddle { namespace lite { #ifdef LITE_WITH_ARM TEST(MobileNetV1, test) { DeviceInfo::Init(); lite::Predictor predictor; std::vector valid_places({Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}}); predictor.Build(FLAGS_model_dir, Place{TARGET(kARM), PRECISION(kFloat)}, valid_places); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({1, 3, 224, 224}))); auto* data = input_tensor->mutable_data(); for (int i = 0; i < input_tensor->dims().production(); i++) { data[i] = 1; } predictor.Run(); auto* out = predictor.GetOutput(0); std::vector results({1.91308980e-04, 5.92055148e-04, 1.12303176e-04, 6.27335685e-05, 1.27507330e-04, 1.32147351e-03, 3.13812525e-05, 6.52209565e-05, 4.78087313e-05, 2.58822285e-04}); for (int i = 0; i < results.size(); ++i) { EXPECT_NEAR(out->data()[i], results[i], 1e-5); } ASSERT_EQ(out->dims().size(), 2); ASSERT_EQ(out->dims()[0], 1); ASSERT_EQ(out->dims()[1], 1000); } #endif } // namespace lite } // namespace paddle