/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h" namespace paddle { namespace inference { namespace tensorrt { class SplitOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { VLOG(4) << "convert a fluid split op to tensorrt split layer"; framework::OpDesc op_desc(op, nullptr); // Declare inputs auto* input = engine_->GetITensor(op_desc.Input("X")[0]); auto input_dims = input->getDimensions(); size_t input_num = op_desc.Input("X").size(); size_t output_num = op_desc.Output("Out").size(); // Get Attrs int axis = BOOST_GET_CONST(int, op_desc.GetAttr("axis")); std::vector output_lengths = BOOST_GET_CONST(std::vector, op_desc.GetAttr("sections")); int num = 0; if (op_desc.HasAttr("num")) { num = BOOST_GET_CONST(int, op_desc.GetAttr("num")); } if (engine_->with_dynamic_shape()) { #if IS_TRT_VERSION_GE(6000) axis += (axis < 0) ? input_dims.nbDims : 0; #endif } else { axis += (axis < 0) ? input_dims.nbDims : -1; } PADDLE_ENFORCE_NE(input_dims.d[axis], -1, platform::errors::InvalidArgument( "The (%d) dim of input should not be -1", axis)); if (num > 0) { int64_t in_axis_dim = input_dims.d[axis]; PADDLE_ENFORCE_EQ( in_axis_dim % num, 0, platform::errors::InvalidArgument( "Invalid number to split. Tensor split does not result" " in an equal division of dimensions. Axis dim = %d %% num = %d " "!= 0", in_axis_dim, num)); size_t out_axis_dim = in_axis_dim / num; for (int i = 0; i < num; ++i) { output_lengths.push_back(out_axis_dim); } } PADDLE_ENFORCE_EQ( output_lengths.size(), output_num, platform::errors::InvalidArgument( "The output_length should be equal to the output size.")); nvinfer1::ILayer* layer = nullptr; if (engine_->with_dynamic_shape()) { #if IS_TRT_VERSION_GE(6000) bool with_fp16 = engine_->WithFp16() && !engine_->disable_trt_plugin_fp16(); plugin::SplitPluginDynamic* plugin = new plugin::SplitPluginDynamic(axis, output_lengths, with_fp16); layer = engine_->AddDynamicPlugin(&input, input_num, plugin); #else PADDLE_THROW(platform::errors::Fatal( "You are running the TRT Dynamic Shape mode, need to confirm that " "your TRT version is no less than 6.0")); #endif } else { bool with_fp16 = engine_->WithFp16() && !engine_->disable_trt_plugin_fp16(); plugin::SplitPlugin* plugin = new plugin::SplitPlugin(axis, output_lengths, with_fp16); layer = engine_->AddPluginV2Ext(&input, input_num, plugin); } std::string layer_name = "split (Output: "; for (size_t i = 0; i < output_num; i++) { auto output_name = op_desc.Output("Out")[i]; layer->getOutput(i)->setName(output_name.c_str()); engine_->SetITensor(output_name, layer->getOutput(i)); layer_name += output_name; if (test_mode) { engine_->DeclareOutput(output_name); } } layer->setName((layer_name + ")").c_str()); } }; } // namespace tensorrt } // namespace inference } // namespace paddle REGISTER_TRT_OP_CONVERTER(split, SplitOpConverter);