# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module privides a memory usage calculate function for user. The purpose of this API is to allow users to estimate memory usage of a program under a special batch size, then user can set appropriate batch size to fully utilize a GPU. This API is still under active development and may change drastically. """ from __future__ import print_function import six from .. import core from ..framework import Program, Variable __all__ = ['memory_usage'] dtype_to_size = { core.VarDesc.VarType.FP16: 2, core.VarDesc.VarType.FP32: 4, core.VarDesc.VarType.FP64: 8, core.VarDesc.VarType.INT16: 2, core.VarDesc.VarType.INT32: 4, core.VarDesc.VarType.INT64: 8, core.VarDesc.VarType.BOOL: 1, core.VarDesc.VarType.UINT8: 1, } DEBUG = False def memory_usage(program, batch_size): """ Get the estimate memory usage of program with input batch size. Args: program(Program): The current Program. batch_size(int): The current input data batch_size. Returns: min_total_memory(float): the estimate memory usage lower bound. max_total_memory(float): the estimate memory usage upper bound. unit_str(string): the unit of estimate usage result. Examples: >>> import paddle.fluid as fluid >>> lower_usage, upper_usage, unit = fluid.contrib.memory_usage( fluid.default_main_program(), batch_size=10) >>> print "memory usage is about %.3f - %.3f %s" % \ (lower_usage, upper_usage, unit) """ # Parameters check if not isinstance(program, Program): raise TypeError( "Calculating Memory Usage requires Program as its Parameter." "But you passed in %s" % (type(program))) if batch_size <= 0: raise ValueError("The batch size need to be positive.") # Get the var_name list of first block and calculate total_memory = 0.0 processed_var_names = set() for op in program.global_block().ops: for var_name in op.output_arg_names: if var_name in processed_var_names: continue processed_var_names.add(var_name) var = program.global_block().vars[var_name] if var.desc.type() != core.VarDesc.VarType.LOD_TENSOR: continue data_count = 1 neg_dim_count = 0 for x in var.shape: if x < 0: if neg_dim_count >= 1: raise ValueError("Var %s has more than one negtive dim." % (var_name)) neg_dim_count += 1 data_count *= batch_size * (-x) else: data_count *= x var_memory = data_count * dtype_to_size[var.dtype] if DEBUG: print("%s memory usage: %d" % (var.name, var_memory)) total_memory += var_memory if DEBUG: print("total memory usage: %.2f" % (total_memory)) # Convert appropriate unit unit_str = "B" if total_memory > 1024: total_memory /= 1024 unit_str = "KB" if total_memory > 1024: total_memory /= 1024 unit_str = "MB" # Append extra memory consumption (5% - 10%) min_total_memory = total_memory * 1.05 max_total_memory = total_memory * 1.1 return min_total_memory, max_total_memory, unit_str