apiVersion: batch/v1 kind: Job metadata: name: vgg16v2job-trainer spec: parallelism: 20 completions: 20 template: metadata: labels: paddle-job: vgg16v2job spec: imagePullSecrets: - name: job-registry-secret hostNetwork: true containers: - name: trainer image: "registry.baidu.com/paddlepaddle/fluid_benchmark:vgg16" imagePullPolicy: Always command: ["paddle_k8s", "start_trainer", "v2"] env: - name: PADDLE_JOB_NAME value: vgg16v2job - name: BATCH_SIZE value: "128" - name: TRAINERS value: "20" - name: PSERVERS value: "10" - name: TOPOLOGY value: "" - name: ENTRY value: "cd /workspace && MKL_NUM_THREADS=1 python /workspace/vgg16_v2.py" - name: TRAINER_PACKAGE value: "/workspace" - name: PADDLE_INIT_PORT value: "30236" - name: PADDLE_INIT_NICS value: "xgbe0" - name: PADDLE_INIT_TRAINER_COUNT value: "2" - name: PADDLE_INIT_PORTS_NUM value: "1" - name: PADDLE_INIT_PORTS_NUM_FOR_SPARSE value: "1" - name: PADDLE_INIT_NUM_GRADIENT_SERVERS value: "20" - name: PADDLE_INIT_NUM_PASSES value: "2" - name: PADDLE_INIT_USE_GPU value: "0" - name: LD_LIBRARY_PATH value: "/usr/local/lib:/usr/local/nvidia/lib64" - name: NAMESPACE valueFrom: fieldRef: fieldPath: "metadata.namespace" resources: requests: memory: 40Gi cpu: 2 limits: memory: 40Gi cpu: 2 restartPolicy: Never