# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle import numpy as np from op_test import OpTest import os paddle.seed(100) class TestExponentialOp1(OpTest): def setUp(self): paddle.enable_static() self.op_type = "exponential" self.config() self.attrs = {"lambda": self.lam} self.inputs = {'X': np.empty([1024, 1024], dtype=self.dtype)} self.outputs = {'Out': np.ones([1024, 1024], dtype=self.dtype)} def config(self): self.lam = 0.5 self.dtype = "float64" def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): hist1, _ = np.histogram(outs[0], range=(0, 5)) hist1 = hist1.astype("float32") hist1 = hist1 / float(outs[0].size) data_np = np.random.exponential(1. / self.lam, [1024, 1024]) hist2, _ = np.histogram(data_np, range=(0, 5)) hist2 = hist2.astype("float32") hist2 = hist2 / float(data_np.size) np.testing.assert_allclose(hist1, hist2, rtol=0.02) def test_check_grad_normal(self): self.check_grad( ['X'], 'Out', user_defined_grads=[np.zeros([1024, 1024], dtype=self.dtype)], user_defined_grad_outputs=[ np.random.rand(1024, 1024).astype(self.dtype) ]) class TestExponentialOp2(TestExponentialOp1): def config(self): self.lam = 0.25 self.dtype = "float32" class TestExponentialAPI(unittest.TestCase): def test_static(self): with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): x_np = np.full([10, 10], -1.) x = paddle.static.data(name="X", shape=[10, 10], dtype='float64') x.exponential_(1.0) exe = paddle.static.Executor() out = exe.run(paddle.static.default_main_program(), feed={"X": x_np}, fetch_list=[x]) self.assertTrue(np.min(out) >= 0) def test_dygraph(self): paddle.disable_static() x = paddle.full([10, 10], -1., dtype='float32') x.stop_gradient = False y = 2 * x y.exponential_(0.5) print(y) self.assertTrue(np.min(y.numpy()) >= 0) y.backward() np.testing.assert_array_equal(x.grad.numpy(), np.zeros([10, 10])) paddle.enable_static() def test_fixed_random_number(self): # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t' if not paddle.is_compiled_with_cuda(): return # Different GPU generatte different random value. Only test V100 here. if "V100" not in paddle.device.cuda.get_device_name(): return print("Test Fixed Random number on V100 GPU------>") paddle.disable_static() paddle.set_device('gpu') paddle.seed(2021) x = paddle.empty([64, 3, 1024, 1024], dtype="float32") x.exponential_(1.0) x_np = x.numpy() expect = [ 0.80073667, 0.2249291, 0.07734892, 1.25392, 0.14013891, 0.45736602, 1.9735607, 0.30490234, 0.57100505, 0.8115938 ] np.testing.assert_allclose(x_np[0, 0, 0, 0:10], expect, rtol=1e-05) expect = [ 1.4296371e+00, 9.5411777e-01, 5.2575850e-01, 2.4805880e-01, 1.2322118e-04, 8.4604341e-01, 2.1111444e-01, 1.4143821e+00, 2.8194717e-01, 1.1360573e+00 ] np.testing.assert_allclose(x_np[16, 1, 300, 200:210], expect, rtol=1e-05) expect = [ 1.3448033, 0.35146526, 1.7380928, 0.32012638, 0.10396296, 0.51344526, 0.15308502, 0.18712929, 0.03888268, 0.20771872 ] np.testing.assert_allclose(x_np[32, 1, 600, 500:510], expect, rtol=1e-05) expect = [ 0.5107464, 0.20970327, 2.1986802, 1.580056, 0.31036147, 0.43966478, 0.9056133, 0.30119267, 1.4797124, 1.4319834 ] np.testing.assert_allclose(x_np[48, 2, 900, 800:810], expect, rtol=1e-05) expect = [ 3.4640615, 1.1019983, 0.41195083, 0.22681557, 0.291846, 0.53617656, 1.5791925, 2.4645927, 0.04094889, 0.9057725 ] np.testing.assert_allclose(x_np[63, 2, 1023, 1000:1010], expect, rtol=1e-05) x = paddle.empty([10, 10], dtype="float32") x.exponential_(3.0) x_np = x.numpy() expect = [ 0.02831675, 0.1691551, 0.6798956, 0.69347525, 0.0243443, 0.22180498, 0.30574575, 0.9839696, 0.2834912, 0.59420055 ] np.testing.assert_allclose(x_np[5, 0:10], expect, rtol=1e-05) x = paddle.empty([16, 2, 1024, 768], dtype="float64") x.exponential_(0.25) x_np = x.numpy() expect = [ 10.0541229, 12.67860643, 1.09850734, 7.35289643, 2.65471225, 3.86217432, 2.97902086, 2.92744479, 2.67927152, 0.19667352 ] np.testing.assert_allclose(x_np[0, 0, 0, 100:110], expect, rtol=1e-05) expect = [ 0.68328125, 3.1454553, 0.92158376, 1.95842188, 1.05296941, 12.93242051, 5.20255978, 3.3588624, 1.57377174, 5.73194183 ] np.testing.assert_allclose(x_np[4, 0, 300, 190:200], expect, rtol=1e-05) expect = [ 1.37973974, 3.45036798, 7.94625406, 1.62610973, 0.31032122, 4.13596493, 1.98494535, 1.13207041, 8.30592769, 2.81460147 ] np.testing.assert_allclose(x_np[8, 1, 600, 300:310], expect, rtol=1e-05) expect = [ 2.27710811, 12.25003028, 2.96409124, 4.72405788, 0.67917249, 4.35856718, 0.46870976, 2.31120149, 9.61595826, 4.64446271 ] np.testing.assert_allclose(x_np[12, 1, 900, 500:510], expect, rtol=1e-05) expect = [ 0.95883744, 1.57316361, 15.22524512, 20.49559882, 13.70008548, 3.29430143, 3.90390424, 0.9146657, 0.80972249, 0.33376219 ] np.testing.assert_allclose(x_np[15, 1, 1023, 750:760], expect, rtol=1e-05) x = paddle.empty([512, 768], dtype="float64") x.exponential_(0.3) x_np = x.numpy() expect = [ 8.79266704, 4.79596009, 2.75480243, 6.04670011, 0.35379556, 0.76864868, 3.17428251, 0.26556859, 12.22485885, 10.51690383 ] np.testing.assert_allclose(x_np[0, 200:210], expect, rtol=1e-05) expect = [ 5.6341126, 0.52243418, 5.36410796, 6.83672002, 11.9243311, 5.85985566, 5.75169548, 0.13877972, 6.1348385, 3.82436519 ] np.testing.assert_allclose(x_np[300, 400:410], expect, rtol=1e-05) expect = [ 4.94883581, 0.56345306, 0.85841585, 1.92287801, 6.10036656, 1.19524847, 3.64735434, 5.19618716, 2.57467974, 3.49152791 ] np.testing.assert_allclose(x_np[500, 700:710], expect, rtol=1e-05) x = paddle.empty([10, 10], dtype="float64") x.exponential_(4.0) x_np = x.numpy() expect = [ 0.15713826, 0.56395964, 0.0680941, 0.00316643, 0.27046853, 0.19852724, 0.12776634, 0.09642974, 0.51977551, 1.33739699 ] np.testing.assert_allclose(x_np[5, 0:10], expect, rtol=1e-05) paddle.enable_static() if __name__ == "__main__": paddle.enable_static() unittest.main()