/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/pten/api/lib/utils/storage.h" #include "paddle/pten/core/dense_tensor.h" #include "paddle/pten/include/infermeta.h" namespace pten { template void MeanKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DenseTensor* out); template void AddKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void SubtractKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void DivideKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void MultiplyKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void SumKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DataType out_dtype, DenseTensor* out); template DenseTensor Add(const ContextT& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis) { auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis); pten::DenseTensor dense_out( pten::make_intrusive( dev_ctx.GetPlace()), std::move(out_meta)); AddKernel(dev_ctx, x, y, axis, &dense_out); return dense_out; } template DenseTensor Subtract(const ContextT& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis) { auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis); pten::DenseTensor dense_out( pten::make_intrusive( dev_ctx.GetPlace()), std::move(out_meta)); SubtractKernel(dev_ctx, x, y, axis, &dense_out); return dense_out; } template DenseTensor Divide(const ContextT& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis) { auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis); pten::DenseTensor dense_out( pten::make_intrusive( dev_ctx.GetPlace()), std::move(out_meta)); DivideKernel(dev_ctx, x, y, axis, &dense_out); return dense_out; } template DenseTensor Multiply(const ContextT& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis) { auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis); pten::DenseTensor dense_out( pten::make_intrusive( dev_ctx.GetPlace()), std::move(out_meta)); MultiplyKernel(dev_ctx, x, y, axis, &dense_out); return dense_out; } } // namespace pten