/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "cub/cub.cuh" #include "cub/util_allocator.cuh" #if defined(PADDLE_WITH_CUDA) #include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h" #include "paddle/fluid/platform/cuda_device_guard.h" #include "paddle/fluid/platform/dynload/nccl.h" #include "paddle/fluid/platform/timer.h" #include "thrust/pair.h" #elif defined(PADDLE_WITH_XPU_KP) #include #include "paddle/fluid/platform/device/xpu/enforce_xpu.h" #endif #include "paddle/fluid/framework/fleet/heter_ps/hashtable.h" #include "paddle/fluid/framework/fleet/heter_ps/heter_comm_kernel.h" #include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h" #include "paddle/fluid/memory/allocation/allocator.h" #include "paddle/fluid/memory/memory.h" #include "paddle/fluid/platform/place.h" #ifdef PADDLE_WITH_HETERPS namespace paddle { namespace framework { #define TYPEALIGN(ALIGNVAL, LEN) \ (((uint64_t)(LEN) + ((ALIGNVAL)-1)) & ~((uint64_t)((ALIGNVAL)-1))) template class HeterComm { public: HeterComm(size_t capacity, std::shared_ptr resource); HeterComm(size_t capacity, std::shared_ptr resource, GPUAccessor& gpu_accessor); virtual ~HeterComm(); HeterComm(const HeterComm&) = delete; HeterComm& operator=(const HeterComm&) = delete; void merge_keys(int gpu_num, const KeyType* d_keys, size_t len, KeyType* d_sorted_keys, KeyType* d_merged_keys, uint32_t* d_restore_idx, size_t& uniq_len); void dynamic_merge_grad(int gpu_num, KeyType* d_keys, float* d_grads, size_t len, int& uniq_len, size_t& segment_len, bool enable_segment_merge_grad); void segment_merge_grad(int gpu_num, KeyType* d_keys, float* d_grads, const uint32_t* d_index, size_t len, const uint32_t* d_fea_num_info, size_t uniq_len, size_t& segment_len); void build_ps(int num, KeyType* h_keys, ValType* h_vals, size_t len, size_t chunk_size, int stream_num, int offset = -1); void split_input_to_shard(KeyType* d_keys, int* d_idx_ptr, size_t len, int* left, int* right, int gpu_num); void merge_grad(int gpu_num, KeyType* d_keys, GradType* d_grads, size_t len, int& uniq_len); // NOLINT void dynamic_merge_grad( int gpu_num, KeyType* d_keys, float* d_grads, size_t len, int& uniq_len); void pull_sparse(int num, KeyType* d_keys, float* d_vals, size_t len); void build_ps(int num, KeyType* h_keys, char* pool, size_t len, size_t feature_value_size, size_t chunk_size, int stream_num); void dump(); void show_one_table(int gpu_num); void show_table_collisions(); int get_index_by_devid(int devid); #if defined(PADDLE_WITH_CUDA) template void push_sparse(int num, KeyType* d_keys, float* d_grads, size_t len, Sgd& sgd); // NOLINT #elif defined(PADDLE_WITH_XPU_KP) void push_sparse(int num, KeyType* d_keys, GradType* d_grads, size_t len); #endif void set_sparse_sgd(const OptimizerConfig& optimizer_config); void set_embedx_sgd(const OptimizerConfig& optimizer_config); int log2i(int x); template void memory_copy(DstPlace dst_place, void* dst, SrcPlace src_place, const void* src, size_t count, StreamType stream = 0); #if defined(PADDLE_WITH_CUDA) template void push_sparse_multi_node(int num, KeyType* d_keys, GradType* d_grads, size_t len, Sgd& sgd); // NOLINT template void update_one_table(int num, KeyType* d_keys, GradType* d_grads, size_t len, Sgd& sgd); // NOLINT int gather_one_node_grad(int num, KeyType* d_keys, GradType* d_grads, int len); int gather_multi_node_grad(int num, KeyType* d_keys, GradType* d_grads, int len); void set_nccl_comm_and_size(const std::vector& inner_comms, const std::vector& inter_comms, int comm_size) { nccl_inner_comms_ = inner_comms; nccl_inter_comms_ = inter_comms; node_size_ = comm_size; } void set_multi_mf_dim(int multi_mf_dim, int max_mf_dim) { multi_mf_dim_ = multi_mf_dim; max_mf_dim_ = max_mf_dim; } #endif bool need_transfer(int send_id, int receive_id) { return ((send_id / 4 != receive_id / 4) && (send_id + 4) % 8 != receive_id); } // void dump_to_cpu(int index); int get_transfer_devid(int send_id) { return (send_id + 4) % 8; } void end_pass(); #if defined(PADDLE_WITH_CUDA) // dedup int dedup_keys_and_fillidx(const int gpu_id, const int total_fea_num, const KeyType* d_keys, // input KeyType* d_merged_keys, // output KeyType* d_sorted_keys, uint32_t* d_restore_idx, uint32_t* d_sorted_idx, uint32_t* d_offset, uint32_t* d_merged_cnts, bool filter_zero); #endif struct Node { ppStream in_stream; ppStream out_stream; char* key_storage; char* val_storage; int sync; size_t key_bytes_len; size_t val_bytes_len; int dev_num; }; struct Path { std::vector nodes_; }; struct CopyTask { Path* path; int step; CopyTask(Path* path_, int step_) : path(path_), step(step_) {} }; struct LocalStorage { LocalStorage() {} void init(int size, int dev_id) { place_ = platform::CUDAPlace(dev_id); alloc(size, true); } void alloc(size_t size, bool force = false) { if (force || size > all_keys_mem->size()) { all_keys_mem.reset(); all_grads_mem.reset(); all_keys_mem = memory::Alloc(place_, size * sizeof(KeyType)); all_grads_mem = memory::Alloc(place_, size * sizeof(GradType)); all_keys = reinterpret_cast(all_keys_mem->ptr()); all_grads = reinterpret_cast(all_grads_mem->ptr()); } if (force || size > local_keys_mem->size()) { local_keys_mem.reset(); local_grads_mem.reset(); local_keys_mem = memory::Alloc(place_, size * sizeof(KeyType)); local_grads_mem = memory::Alloc(place_, size * sizeof(GradType)); local_keys = reinterpret_cast(local_keys_mem->ptr()); local_grads = reinterpret_cast(local_grads_mem->ptr()); } } #if defined(PADDLE_WITH_CUDA) platform::CUDAPlace place_; #elif defined(PADDLE_WITH_XPU_KP) platform::XPUPlace place_; #endif std::shared_ptr all_keys_mem; std::shared_ptr all_grads_mem; KeyType* all_keys; GradType* all_grads; std::shared_ptr local_keys_mem; std::shared_ptr local_grads_mem; KeyType* local_keys; GradType* local_grads; }; void init_path(); template void sync_stream(const StreamType& stream) { #if defined(PADDLE_WITH_CUDA) PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream)); #elif defined(PADDLE_WITH_XPU_KP) PADDLE_ENFORCE_XPU_SUCCESS(xpu_wait(stream)); #endif } template void create_stream(StreamType* stream) { #if defined(PADDLE_WITH_CUDA) PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamCreate(stream)); #elif defined(PADDLE_WITH_XPU_KP) PADDLE_ENFORCE_XPU_SUCCESS(xpu_stream_create(stream)); #endif } template void destroy_stream(StreamType stream) { #if defined(PADDLE_WITH_CUDA) PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamDestroy(stream)); #elif defined(PADDLE_WITH_XPU_KP) PADDLE_ENFORCE_XPU_SUCCESS(xpu_stream_destroy(stream)); #endif } void create_storage(int start_index, int end_index, size_t keylen, size_t vallen); void destroy_storage(int start_index, int end_index); void walk_to_dest(int start_index, int gpu_num, int* h_left, int* h_right, KeyType* src_key, GradType* src_val); void walk_to_dest(int start_index, int gpu_num, int* h_left, int* h_right, KeyType* src_key, char* src_val, size_t val_size); void walk_to_src(int start_index, int gpu_num, int* h_left, int* h_right, ValType* src_val); void walk_to_src(int start_index, int gpu_num, int* h_left, int* h_right, char* src_val, size_t val_size); protected: void pull_merge_sparse(int num, KeyType* d_keys, float* d_vals, size_t len); void pull_normal_sparse(int num, KeyType* d_keys, float* d_vals, size_t len); using Table = HashTable; using PtrTable = HashTable; std::vector tables_; std::vector ptr_tables_; std::shared_ptr resource_; std::vector> path_; float load_factor_{0.75}; int block_size_{256}; std::unique_ptr heter_comm_kernel_; GPUAccessor gpu_accessor_; private: int topo_aware_{0}; std::vector storage_; DynamicGradMerger merger_; int feanum_{1800 * 2048}; int multi_node_{0}; int node_size_; #if defined(PADDLE_WITH_CUDA) std::vector nccl_inner_comms_; std::vector nccl_inter_comms_; int multi_mf_dim_{8}; int max_mf_dim_ = 8; std::vector> allocators_; #endif }; } // end namespace framework } // end namespace paddle #include "paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h" #endif