/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/operators/controlflow/compare_op.h" #include "paddle/fluid/operators/metrics/accuracy_op.h" #include "paddle/fluid/operators/npu_op_runner.h" namespace paddle { namespace operators { template class AccuracyNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* inference = ctx.Input("Out"); auto* label = ctx.Input("Label"); auto* indices = ctx.Input("Indices"); auto* accuracy = ctx.Output("Accuracy"); auto* correct = ctx.Output("Correct"); auto* total = ctx.Output("Total"); auto stream = ctx.template device_context() .stream(); int num_samples = inference->dims()[0]; if (num_samples == 0) { return; } // cast `indices` or `label` if their type is not consistent Tensor cast_indices(framework::proto::VarType::INT32); Tensor cast_label(framework::proto::VarType::INT32); if (indices->type() != label->type()) { auto dst_dtype = ConvertToNpuDtype(framework::proto::VarType::INT32); if (indices->type() != framework::proto::VarType::INT32) { cast_indices.Resize(indices->dims()); cast_indices.mutable_data(ctx.GetPlace()); auto runner_cast_indices = NpuOpRunner("Cast", {*indices}, {cast_indices}, {{"dst_type", static_cast(dst_dtype)}}); runner_cast_indices.Run(stream); } else { cast_indices.ShareDataWith(*indices); } if (label->type() != framework::proto::VarType::INT32) { cast_label.Resize(label->dims()); cast_label.mutable_data(ctx.GetPlace()); auto runner_cast_label = NpuOpRunner("Cast", {*label}, {cast_label}, {{"dst_type", static_cast(dst_dtype)}}); runner_cast_label.Run(stream); } else { cast_label.ShareDataWith(*label); } } else { cast_indices.ShareDataWith(*indices); cast_label.ShareDataWith(*label); } // equal Tensor tmp_equal(framework::proto::VarType::BOOL); tmp_equal.Resize(inference->dims()); tmp_equal.mutable_data(ctx.GetPlace()); auto runner_equal = NpuOpRunner("Equal", {cast_indices, cast_label}, {tmp_equal}, {}); runner_equal.Run(stream); // cast equal Tensor tmp_equal_cast(framework::proto::VarType::FP32); tmp_equal_cast.Resize(inference->dims()); tmp_equal_cast.mutable_data(ctx.GetPlace()); auto runner_cast_equal = NpuOpRunner( "Cast", {tmp_equal}, {tmp_equal_cast}, {{"dst_type", static_cast(ConvertToNpuDtype(tmp_equal_cast.type()))}}); runner_cast_equal.Run(stream); // [correct] // reduce_max Tensor tmp_correct_max(framework::proto::VarType::FP32); tmp_correct_max.Resize(framework::make_ddim({num_samples})); tmp_correct_max.mutable_data(ctx.GetPlace()); auto runner_reduce_max = NpuOpRunner("ReduceMaxD", {tmp_equal_cast}, {tmp_correct_max}, {{"axes", std::vector{1}}, {"keep_dims", false}}); runner_reduce_max.Run(stream); // reduce_sum Tensor tmp_correct(framework::proto::VarType::FP32); tmp_correct.Resize(correct->dims()); tmp_correct.mutable_data(ctx.GetPlace()); auto runner_reduce_sum = NpuOpRunner("ReduceSumD", {tmp_correct_max}, {tmp_correct}, {{"axes", std::vector{0}}, {"keep_dims", false}}); runner_reduce_sum.Run(stream); // cast to int correct->mutable_data(ctx.GetPlace()); auto runner_cast_correct = NpuOpRunner( "Cast", {tmp_correct}, {*correct}, {{"dst_type", static_cast(ConvertToNpuDtype(correct->type()))}}); runner_cast_correct.Run(stream); // [total] total->mutable_data(ctx.GetPlace()); FillNpuTensorWithConstant(total, static_cast(num_samples)); // use `total` of type `float32` for calculating accuracy Tensor tmp_total(framework::proto::VarType::FP32); tmp_total.Resize(total->dims()); tmp_total.mutable_data(ctx.GetPlace()); FillNpuTensorWithConstant(&tmp_total, static_cast(num_samples)); // [accuracy] accuracy->mutable_data(ctx.GetPlace()); auto runner_accuracy = NpuOpRunner("Div", {tmp_correct, tmp_total}, {*accuracy}, {}); runner_accuracy.Run(stream); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_NPU_KERNEL( accuracy, ops::AccuracyNPUKernel, ops::AccuracyNPUKernel, ops::AccuracyNPUKernel, ops::AccuracyNPUKernel);