# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid from op_test import OpTest paddle.enable_static() # Correct: General. class TestUnsqueezeOp(OpTest): def setUp(self): self.init_test_case() self.op_type = "unsqueeze2" self.python_api = paddle.unsqueeze self.python_out_sig = ["Out"] self.inputs = {"X": np.random.random(self.ori_shape).astype("float64")} self.init_attrs() self.outputs = { "Out": self.inputs["X"].reshape(self.new_shape), "XShape": np.random.random(self.ori_shape).astype("float64") } def test_check_output(self): self.check_output(no_check_set=["XShape"], check_eager=True) def test_check_grad(self): self.check_grad(["X"], "Out", check_eager=True) def init_test_case(self): self.ori_shape = (3, 40) self.axes = (1, 2) self.new_shape = (3, 1, 1, 40) def init_attrs(self): self.attrs = {"axes": self.axes} # Correct: Single input index. class TestUnsqueezeOp1(TestUnsqueezeOp): def init_test_case(self): self.ori_shape = (20, 5) self.axes = (-1, ) self.new_shape = (20, 5, 1) # Correct: Mixed input axis. class TestUnsqueezeOp2(TestUnsqueezeOp): def init_test_case(self): self.ori_shape = (20, 5) self.axes = (0, -1) self.new_shape = (1, 20, 5, 1) # Correct: There is duplicated axis. class TestUnsqueezeOp3(TestUnsqueezeOp): def init_test_case(self): self.ori_shape = (10, 2, 5) self.axes = (0, 3, 3) self.new_shape = (1, 10, 2, 1, 1, 5) # Correct: Reversed axes. class TestUnsqueezeOp4(TestUnsqueezeOp): def init_test_case(self): self.ori_shape = (10, 2, 5) self.axes = (3, 1, 1) self.new_shape = (10, 1, 1, 2, 5, 1) class TestUnsqueezeOp_ZeroDim1(TestUnsqueezeOp): def init_test_case(self): self.ori_shape = () self.axes = (-1, ) self.new_shape = (1) class TestUnsqueezeOp_ZeroDim2(TestUnsqueezeOp): def init_test_case(self): self.ori_shape = () self.axes = (-1, 1) self.new_shape = (1, 1) class TestUnsqueezeOp_ZeroDim3(TestUnsqueezeOp): def init_test_case(self): self.ori_shape = () self.axes = (0, 1, 2) self.new_shape = (1, 1, 1) # axes is a list(with tensor) class TestUnsqueezeOp_AxesTensorList(OpTest): def setUp(self): self.init_test_case() self.op_type = "unsqueeze2" self.python_out_sig = ["Out"] self.python_api = paddle.unsqueeze axes_tensor_list = [] for index, ele in enumerate(self.axes): axes_tensor_list.append(("axes" + str(index), np.ones( (1)).astype('int32') * ele)) self.inputs = { "X": np.random.random(self.ori_shape).astype("float64"), "AxesTensorList": axes_tensor_list } self.init_attrs() self.outputs = { "Out": self.inputs["X"].reshape(self.new_shape), "XShape": np.random.random(self.ori_shape).astype("float64") } def test_check_output(self): self.check_output(no_check_set=["XShape"], check_eager=True) def test_check_grad(self): self.check_grad(["X"], "Out", check_eager=True) def init_test_case(self): self.ori_shape = (20, 5) self.axes = (1, 2) self.new_shape = (20, 1, 1, 5) def init_attrs(self): self.attrs = {} class TestUnsqueezeOp1_AxesTensorList(TestUnsqueezeOp_AxesTensorList): def init_test_case(self): self.ori_shape = (20, 5) self.axes = (-1, ) self.new_shape = (20, 5, 1) class TestUnsqueezeOp2_AxesTensorList(TestUnsqueezeOp_AxesTensorList): def init_test_case(self): self.ori_shape = (20, 5) self.axes = (0, -1) self.new_shape = (1, 20, 5, 1) class TestUnsqueezeOp3_AxesTensorList(TestUnsqueezeOp_AxesTensorList): def init_test_case(self): self.ori_shape = (10, 2, 5) self.axes = (0, 3, 3) self.new_shape = (1, 10, 2, 1, 1, 5) class TestUnsqueezeOp4_AxesTensorList(TestUnsqueezeOp_AxesTensorList): def init_test_case(self): self.ori_shape = (10, 2, 5) self.axes = (3, 1, 1) self.new_shape = (10, 1, 1, 2, 5, 1) # axes is a Tensor class TestUnsqueezeOp_AxesTensor(OpTest): def setUp(self): self.init_test_case() self.op_type = "unsqueeze2" self.python_out_sig = ["Out"] self.python_api = paddle.unsqueeze self.inputs = { "X": np.random.random(self.ori_shape).astype("float64"), "AxesTensor": np.array(self.axes).astype("int32") } self.init_attrs() self.outputs = { "Out": self.inputs["X"].reshape(self.new_shape), "XShape": np.random.random(self.ori_shape).astype("float64") } def test_check_output(self): self.check_output(no_check_set=["XShape"], check_eager=True) def test_check_grad(self): self.check_grad(["X"], "Out", check_eager=True) def init_test_case(self): self.ori_shape = (20, 5) self.axes = (1, 2) self.new_shape = (20, 1, 1, 5) def init_attrs(self): self.attrs = {} class TestUnsqueezeOp1_AxesTensor(TestUnsqueezeOp_AxesTensor): def init_test_case(self): self.ori_shape = (20, 5) self.axes = (-1, ) self.new_shape = (20, 5, 1) class TestUnsqueezeOp2_AxesTensor(TestUnsqueezeOp_AxesTensor): def init_test_case(self): self.ori_shape = (20, 5) self.axes = (0, -1) self.new_shape = (1, 20, 5, 1) class TestUnsqueezeOp3_AxesTensor(TestUnsqueezeOp_AxesTensor): def init_test_case(self): self.ori_shape = (10, 2, 5) self.axes = (0, 3, 3) self.new_shape = (1, 10, 2, 1, 1, 5) class TestUnsqueezeOp4_AxesTensor(TestUnsqueezeOp_AxesTensor): def init_test_case(self): self.ori_shape = (10, 2, 5) self.axes = (3, 1, 1) self.new_shape = (10, 1, 1, 2, 5, 1) # test api class TestUnsqueezeAPI(unittest.TestCase): def setUp(self): self.executed_api() def executed_api(self): self.unsqueeze = paddle.unsqueeze def test_api(self): input = np.random.random([3, 2, 5]).astype("float64") x = paddle.static.data(name='x', shape=[3, 2, 5], dtype="float64") positive_3_int32 = fluid.layers.fill_constant([1], "int32", 3) positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1) axes_tensor_int32 = paddle.static.data(name='axes_tensor_int32', shape=[3], dtype="int32") axes_tensor_int64 = paddle.static.data(name='axes_tensor_int64', shape=[3], dtype="int64") out_1 = self.unsqueeze(x, axis=[3, 1, 1]) out_2 = self.unsqueeze(x, axis=[positive_3_int32, positive_1_int64, 1]) out_3 = self.unsqueeze(x, axis=axes_tensor_int32) out_4 = self.unsqueeze(x, axis=3) out_5 = self.unsqueeze(x, axis=axes_tensor_int64) exe = paddle.static.Executor(place=paddle.CPUPlace()) res_1, res_2, res_3, res_4, res_5 = exe.run( paddle.static.default_main_program(), feed={ "x": input, "axes_tensor_int32": np.array([3, 1, 1]).astype("int32"), "axes_tensor_int64": np.array([3, 1, 1]).astype("int64") }, fetch_list=[out_1, out_2, out_3, out_4, out_5]) assert np.array_equal(res_1, input.reshape([3, 1, 1, 2, 5, 1])) assert np.array_equal(res_2, input.reshape([3, 1, 1, 2, 5, 1])) assert np.array_equal(res_3, input.reshape([3, 1, 1, 2, 5, 1])) assert np.array_equal(res_4, input.reshape([3, 2, 5, 1])) assert np.array_equal(res_5, input.reshape([3, 1, 1, 2, 5, 1])) def test_error(self): def test_axes_type(): x2 = paddle.static.data(name="x2", shape=[2, 25], dtype="int32") self.unsqueeze(x2, axis=2.1) self.assertRaises(TypeError, test_axes_type) class TestUnsqueezeInplaceAPI(TestUnsqueezeAPI): def executed_api(self): self.unsqueeze = paddle.unsqueeze_ class TestUnsqueezeAPI_ZeroDim(unittest.TestCase): def test_dygraph(self): paddle.disable_static() fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True}) x = paddle.rand([]) x.stop_gradient = False out = paddle.unsqueeze(x, [-1]) out.backward() self.assertEqual(out.shape, [1]) self.assertEqual(x.grad.shape, []) self.assertEqual(out.grad.shape, [1]) out = paddle.unsqueeze(x, [-1, 1]) out.backward() self.assertEqual(out.shape, [1, 1]) self.assertEqual(x.grad.shape, []) self.assertEqual(out.grad.shape, [1, 1]) out = paddle.unsqueeze(x, [0, 1, 2]) out.backward() self.assertEqual(out.shape, [1, 1, 1]) self.assertEqual(x.grad.shape, []) self.assertEqual(out.grad.shape, [1, 1, 1]) paddle.enable_static() if __name__ == "__main__": unittest.main()