/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/elementwise_add_op.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenMatrix = framework::EigenMatrix; template using EigenVector = framework::EigenVector; template void Function_forward(T* out, T* x_norm, T* y_norm, ElementIterator& x, ElementIterator& y, int row, int col) { for (int i = 0; i < row; ++i) { T xx = 0; T yy = 0; T xy = 0; for (int j = 0; j < col; ++j) { xy += (*x) * (*y); xx += (*x) * (*x); yy += (*y) * (*y); ++y; ++x; } x_norm[i] = sqrt(xx); y_norm[i] = sqrt(yy); out[i] = xy / (x_norm[i] * y_norm[i]); } } template class CosSimKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { // get Tensor auto* in_x = context.Input("X"); auto* in_y = context.Input("Y"); auto* out_z = context.Output("Out"); auto* out_x_norm = context.Output("XNorm"); auto* out_y_norm = context.Output("YNorm"); out_z->mutable_data(context.GetPlace()); out_x_norm->mutable_data(context.GetPlace()); out_y_norm->mutable_data(context.GetPlace()); int rows_x = in_x->dims()[0]; int rows_y = in_y->dims()[0]; int cols = framework::product(in_x->dims()) / rows_x; auto x_iter = ElementIterator(in_x->data(), rows_x, cols, rows_x, cols); auto y_iter = ElementIterator(in_y->data(), rows_y, cols, rows_x, cols); Function_forward(out_z->data(), out_x_norm->data(), out_y_norm->data(), x_iter, y_iter, rows_x, cols); // // // convert Tensor to Eigen Tensor //// int rows_x = in_x->dims()[0]; //// int rows_y = in_y->dims()[0]; // auto x = EigenMatrix::Reshape(*in_x, 1); // auto y = EigenMatrix::Reshape(*in_y, 1); // auto z = EigenVector::Flatten(*out_z); // auto x_norm = EigenVector::Flatten(*out_x_norm); // auto y_norm = EigenVector::Flatten(*out_y_norm); // // // compute // auto& place = // *context.template device_context().eigen_device(); // auto row_along = Eigen::array({{1}}); // x_norm.device(place) = x.square().sum(row_along).sqrt(); // y_norm.device(place) = y.square().sum(row_along).sqrt(); // if (rows_x == rows_y) { // auto xy = (x * y).sum(Eigen::array({{1}})); // z.device(place) = xy / x_norm / y_norm; // } else { // Eigen::DSizes bcast(rows_x, 1); // auto xy = (x * y.broadcast(bcast)).sum(row_along); // z.device(place) = xy / x_norm / y_norm.broadcast(bcast); // } } }; template void Function_element(T* result, ElementIterator dz, ElementIterator y, ElementIterator x_norm, ElementIterator y_norm, ElementIterator z, ElementIterator x, int num, int block) { for (int i = 0; i < num; ++i) { result[i % block] += (*dz) * ((*y) / ((*x_norm) * (*y_norm)) - (*z) * (*x) / ((*x_norm) * (*x_norm))); ++dz; ++y; ++x_norm; ++y_norm; ++z; ++x; } } template class CosSimGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { // get Tensor auto* in_x = context.Input("X"); auto* in_y = context.Input("Y"); auto* in_z = context.Input("Out"); auto* in_x_norm = context.Input("XNorm"); auto* in_y_norm = context.Input("YNorm"); auto* out_grad_x = context.Output(framework::GradVarName("X")); auto* out_grad_y = context.Output(framework::GradVarName("Y")); auto* in_grad_z = context.Input(framework::GradVarName("Out")); // compute gradident int rows_x = in_x->dims()[0]; int rows_y = in_y->dims()[0]; int cols = framework::product(in_x->dims()) / rows_x; ////////////////////////////// // ## auto x_iter = ElementIterator(in_x->data(), rows_x, cols, rows_x, cols); auto y_iter = ElementIterator(in_y->data(), rows_y, cols, rows_x, cols); auto z_iter = ElementIterator(in_z->data(), rows_x, 1, rows_x, cols); auto dz_iter = ElementIterator(in_grad_z->data(), rows_x, 1, rows_x, cols); auto x_norm_iter = ElementIterator( in_x_norm->data(), rows_x, 1, rows_x, cols); auto y_norm_iter = ElementIterator( in_y_norm->data(), rows_y, 1, rows_x, cols); // ## ////////////////////////////// // compute dx if (out_grad_x) { out_grad_x->mutable_data(context.GetPlace()); ////////////////////////////// // ## Function_element(out_grad_x->data(), dz_iter, y_iter, x_norm_iter, y_norm_iter, z_iter, x_iter, rows_x * cols, rows_x * cols); // ## ////////////////////////////// } // compute dy if (out_grad_y) { out_grad_y->mutable_data(context.GetPlace()); ////////////////////////////// // ## Function_element(out_grad_y->data(), dz_iter, x_iter, y_norm_iter, x_norm_iter, z_iter, y_iter, rows_x * cols, rows_y * cols); // ## ////////////////////////////// } } }; } // namespace operators } // namespace paddle