# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.distributed.fleet.meta_optimizers.common import is_optimizer_op from paddle.distributed.fleet.meta_optimizers.sharding.utils import * from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils __all__ = [] class Shard(object): def __init__(self, ): self.global_params = set([]) self.worker_idx = -1 self.worker_num = -1 self.global_param2device = dict() self.device2global_params = dict() def setup(self, params_grads, worker_idx, worker_num): # param names of all devices self.global_params = set([x[0].name for x in params_grads]) # _param(str) -> device_id(int) self.worker_idx = worker_idx self.worker_num = worker_num # global_param2device contains fp32 params and fp16 params # device2global_params only contains fp32 params self.global_param2device, self.device2global_params \ = self._split_params(params_grads, worker_idx, worker_num) def has_param(self, var_name): return var_name in self.global_param2device and \ self._var_device_id(var_name) == self.worker_idx def has_opt_var(self, var_name): return self._var_device_id(var_name) == self.worker_idx def has_var(self, var_name): return self._var_device_id(var_name) == -1 or \ self._var_device_id(var_name) == self.worker_idx def _split_params(self, params_grads, worker_idx, worker_num): param2device = {} total_param_mem = 0.0 param2mem = [] for param in [x[0] for x in params_grads]: mem = get_var_size(param) total_param_mem += mem param2mem.append((param.name, mem)) device2params = {x: [] for x in range(worker_num)} device_idx = 0 mem_accu = 0.0 for param_name, mem in param2mem: if mem_accu > total_param_mem * 1.0 * (device_idx + 1) / worker_num: device_idx += 1 device2params[device_idx].append(param_name) param2device[param_name] = device_idx mem_accu += mem return param2device, device2params def _var_device_id(self, var_name): if var_name in self.global_param2device: return self.global_param2device[var_name] for suffix in [ "_moment1_0", "_moment2_0", "_beta1_pow_acc_0", "_beta2_pow_acc_0", "_velocity_0" ]: base_name = re.sub(suffix, '', var_name) if base_name in self.global_param2device: return self.global_param2device[base_name] return -1 def find_broadcast_params(self, block): broadcast_vars = set([]) fp16_params = set([]) fp16_to_fp32 = {} param_usage = {x: 0 for x in self.global_params} for op in block.ops: if is_optimizer_op(op): continue for input_name in op.desc.input_arg_names(): if input_name in self.global_params: param_usage[input_name] += 1 for op in block.ops: if not FP16Utils.is_fp16_cast_op(block, op, self.global_params): continue input_name = op.input_arg_names[0] output_name = op.output_arg_names[0] broadcast_vars.add(output_name) fp16_params.add(output_name) fp16_to_fp32[output_name] = input_name param_usage[input_name] -= 1 self.global_param2device[output_name] = self.global_param2device[ input_name] for param, usage in param_usage.items(): if usage > 0: broadcast_vars.add(param) return broadcast_vars def device(self, var_name): return self._var_device_id(var_name) def is_param(self, var_name): return var_name in self.global_params def is_opti_var(self, var_name): if var_name in self.global_params: return True for suffix in [ "_moment1_0", "_moment2_0", "_beta1_pow_acc_0", "_beta2_pow_acc_0", "_velocity_0" ]: base_name = re.sub(suffix, '', var_name) if base_name in self.global_params: return True return False def filter_grads(self, grads): grads_in_shard = [] for grad in grads: param = grad.split("@")[0] if self.has_param(param): grads_in_shard.append(grad) return grads_in_shard class ProgramSegment(object): def __init__(self, block): self._block = block self._allreduce_vars = [] # sub program start idx self._start_idx = -1 # sub program end idx self._end_idx = -1 # param name to broadcast name self._param2broadcast = {} self._broadcast_vars = [] # cast op pairs, fp16 name (str) -> fp32 name (str) self._cast_ops = {} # fill constant vars self._fill_constant_vars = [] # parameter mems self._param_mem = 0.0