# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import core, dygraph import six import warnings import numpy as np import threading import paddle from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode from .executor import global_scope from .data_feeder import DataFeeder, BatchedTensorProvider, ListTensorProvider from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer from .unique_name import UniqueNameGenerator __all__ = ['PyReader'] def _convert_places(places): if not isinstance(places, (list, tuple)): places = [places] ret = [] for p in places: if not isinstance(p, core.Place): tmp = core.Place() tmp.set_place(p) p = tmp ret.append(p) return ret class PyReader(object): """ Create a reader object for data feeding in Python. Data would be prefetched using Python thread and be pushed into a queue asynchronously. Data in the queue would be extracted automatically when `Executor.run(...)` is called. Args: feed_list (list(Variable)|tuple(Variable)): feed variable list. The variables should be created by :code:`fluid.layers.data()`. it can be None under iterable mode. capacity (int): capacity of the queue maintained in PyReader object. use_double_buffer (bool): whether to use double_buffer_reader to speed up data feeding. iterable (bool): whether the created reader object is iterable. return_list (bool): whether the return value presented as list. Returns: reader (Reader): the created reader object. Examples: 1. If iterable = False, the created PyReader object is almost the same as :code:`fluid.layers.py_reader()`. Operators would be inserted into the program. User should call :code:`start()` before each epoch and catch :code:`fluid.core.EOFException` thrown by :code:`Executor.run()` when epoch ends. Once the exception is caught, user should call :code:`reset()` to reset the reader manually. .. code-block:: python EPOCH_NUM = 3 ITER_NUM = 5 BATCH_SIZE = 3 def reader_creator_random_image_and_label(height, width): def reader(): for i in range(ITER_NUM): fake_image = np.random.uniform(low=0, high=255, size=[height, width]) fake_label = np.ones([1]) yield fake_image, fake_label return reader image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=False) user_defined_reader = reader_creator_random_image_and_label(784, 784) reader.decorate_sample_list_generator( paddle.batch(user_defined_reader, batch_size=BATCH_SIZE)) # definition of network is omitted executor = fluid.Executor(fluid.CUDAPlace(0)) executor.run(fluid.default_startup_program()) for i in range(EPOCH_NUM): reader.start() while True: try: executor.run(feed=None) except fluid.core.EOFException: reader.reset() break 2. If iterable=True, the created PyReader object is decoupled with the program. No operator would be inserted into the program. In this case, the created reader is a Python generator, which is iterable. User should feed the data yielded from PyReader object into :code:`Executor.run(feed=...)`. .. code-block:: python EPOCH_NUM = 3 ITER_NUM = 5 BATCH_SIZE = 10 def reader_creator_random_image(height, width): def reader(): for i in range(ITER_NUM): yield np.random.uniform(low=0, high=255, size=[height, width]), return reader image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32') reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=True, return_list=False) user_defined_reader = reader_creator_random_image(784, 784) reader.decorate_sample_list_generator( paddle.batch(user_defined_reader, batch_size=BATCH_SIZE), fluid.core.CUDAPlace(0)) # definition of network is omitted executor = fluid.Executor(fluid.CUDAPlace(0)) executor.run(fluid.default_main_program()) for _ in range(EPOCH_NUM): for data in reader(): executor.run(feed=data) 3. If return_list=True, the return values would be presented as list instead of dict`. .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np EPOCH_NUM = 3 ITER_NUM = 5 BATCH_SIZE = 10 def reader_creator_random_image(height, width): def reader(): for i in range(ITER_NUM): yield np.random.uniform(low=0, high=255, size=[height, width]), return reader image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32') reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=True, return_list=True) user_defined_reader = reader_creator_random_image(784, 784) reader.decorate_sample_list_generator( paddle.batch(user_defined_reader, batch_size=BATCH_SIZE), fluid.core.CPUPlace()) # definition of network is omitted executor = fluid.Executor(fluid.core.CPUPlace()) executor.run(fluid.default_main_program()) for _ in range(EPOCH_NUM): for data in reader(): executor.run(feed={"image": data[0]}) """ unique_name_generator = UniqueNameGenerator() def __init__(self, feed_list=None, capacity=None, use_double_buffer=True, iterable=True, return_list=False): self._tensor_reader = None self._thread = None self._feed_list = feed_list if not capacity: raise ValueError("Please give value to capacity.") # force to use iterable mode under dygraph mode if in_dygraph_mode(): if not iterable: warnings.warn( "Please NOTE: dygraph can support iterable mode only.") self._iterable = True if not return_list: warnings.warn( "Please NOTE: dygraph can support return as list only.") self._return_list = True else: self._iterable = iterable self._return_list = return_list if not self._feed_list: raise Exception("Feed list must be given under static mode.") self._use_double_buffer = use_double_buffer self._capacity = capacity if not self._iterable: self._init_non_iterable() def _init_iterable(self, places): if in_dygraph_mode(): self._var_names = [] else: self._var_names = [v.name for v in self._feed_list] self._places = _convert_places(places) self._queue = core.init_lod_tensor_blocking_queue(core.Variable(), self._capacity) self._reader = core.create_py_reader( self.queue, self._var_names, self._places, self._use_double_buffer) def _init_non_iterable(self): lod_levels = [] dtypes = [] shape_concat = [] ranks = [] shapes = [] for feed_data in self._feed_list: dtypes.append(feed_data.dtype) shape_concat.extend(feed_data.shape) ranks.append(len(feed_data.shape)) shapes.append(feed_data.shape) lod_levels.append(feed_data.lod_level) queue_name = PyReader.unique_name_generator('lod_tensor_blocking_queue') reader_name = PyReader.unique_name_generator('create_py_reader') double_buffer_name = PyReader.unique_name_generator('double_buffer') var = global_scope().var(queue_name) self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity) startup_blk = default_startup_program().current_block() startup_var = startup_blk.create_var(name=reader_name) startup_blk.append_op( type='create_py_reader', inputs={'blocking_queue': [queue_name]}, outputs={'Out': [startup_var]}, attrs={ 'shape_concat': shape_concat, 'lod_levels': lod_levels, 'ranks': ranks }) startup_var.desc.set_dtypes(dtypes) startup_var.persistable = True main_prog_var = _copy_reader_var_( default_main_program().current_block(), startup_var) main_prog_var.stop_gradient = True main_prog_var.persistable = True reader = monkey_patch_reader_methods(main_prog_var) if self._use_double_buffer: double_buffer_reader = double_buffer( reader, name=double_buffer_name) # we return a double buffer reader. However, the reset method comes from # py_reader. double_buffer_reader.reset = reader.reset reader = double_buffer_reader self._reader = reader default_main_program().current_block().append_op( type='read', inputs={'Reader': [self._reader]}, outputs={'Out': self._feed_list}) @property def queue(self): return self._queue @property def iterable(self): return self._iterable def __call__(self): assert self.iterable, "PyReader is not iterable" assert self._tensor_reader is not None, \ "Data source of PyReader has not set yet" class Iterator(object): def __init__(self, reader): self._reader = reader._reader self._reset = reader._reset self._return_list = reader._return_list def __iter__(self): return self def __next__(self): return self.next() def next(self): if not in_dygraph_mode(): if self._return_list: ret = self._reader.read_next_list() ret = ret[0] if ret is not None and len( ret) > 0 else None else: ret = self._reader.read_next() if ret: return ret else: self._reset() raise StopIteration else: ret = self._reader.read_next_list() if ret and ret[0]: return [ dygraph.base.to_variable(np.array(v)) for v in ret[0] ] else: self._reset() raise StopIteration self._start() return Iterator(self) def _reset(self): self._reader.reset() self._thread.join() def start(self): ''' Start the data feeding thread. Can only call when the reader object is not iterable. Example: .. code-block:: python BATCH_SIZE = 10 def generator(): for i in range(5): yield np.random.uniform(low=0, high=255, size=[784, 784]), image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32') reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False) reader.decorate_sample_list_generator( paddle.batch(generator, batch_size=BATCH_SIZE)) executor = fluid.Executor(fluid.CUDAPlace(0)) executor.run(fluid.default_startup_program()) for i in range(3): reader.start() while True: try: executor.run(feed=None) except fluid.core.EOFException: reader.reset() break ''' if not in_dygraph_mode(): assert not self._iterable, "start() cannot be called when PyReader is iterable" self._start() def reset(self): ''' Reset the reader object when :code:`fluid.core.EOFException` raises. Can only call when the reader object is not iterable. Example: .. code-block:: python BATCH_SIZE = 10 def generator(): for i in range(5): yield np.random.uniform(low=0, high=255, size=[784, 784]), image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32') reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False) reader.decorate_sample_list_generator( paddle.batch(generator, batch_size=BATCH_SIZE)) executor = fluid.Executor(fluid.CUDAPlace(0)) executor.run(fluid.default_startup_program()) for i in range(3): reader.start() while True: try: executor.run(feed=None) except fluid.core.EOFException: reader.reset() break ''' if not in_dygraph_mode(): assert not self._iterable, "reset() cannot be called when PyReader is iterable" self._reset() def _start(self): def __thread_main__(): try: for tensors in self._tensor_reader(): array = core.LoDTensorArray() for item in tensors: if not isinstance(item, core.LoDTensor): tmp = core.LoDTensor() tmp.set(item, core.CPUPlace()) item = tmp array.append(item) if not self._queue.push(array): break self._queue.close() except Exception as ex: self._queue.close() raise ex self._thread = threading.Thread(target=__thread_main__) self._thread.daemon = True self._thread.start() def decorate_sample_generator(self, sample_generator, batch_size, drop_last=True, places=None): ''' Set the data source of the PyReader object. The provided :code:`sample_generator` should be a Python generator, which yields list(numpy.ndarray)-typed data of each sample. :code:`places` must be set when the PyReader object is iterable. If all inputs have no lods, this method is faster than :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` . Args: sample_generator (generator): Python generator that yields list(numpy.ndarray)-typed sample data. batch_size (int): batch size. Must be larger than 0. drop_last (bool): Whether to drop the last batch when sample number is less than batch_size. places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must be provided when PyReader is iterable. Example: .. code-block:: python EPOCH_NUM = 3 ITER_NUM = 15 BATCH_SIZE = 3 def random_image_and_label_generator(height, width): def generator(): for i in range(ITER_NUM): fake_image = np.random.uniform(low=0, high=255, size=[height, width]) fake_label = np.array([1]) yield fake_image, fake_label return generator image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int32') reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True) user_defined_generator = random_image_and_label_generator(784, 784) reader.decorate_sample_generator(user_defined_generator, batch_size=BATCH_SIZE, places=[fluid.CUDAPlace(0)]) # definition of network is omitted executor = fluid.Executor(fluid.CUDAPlace(0)) executor.run(fluid.default_main_program()) for _ in range(EPOCH_NUM): for data in reader(): executor.run(feed=data) ''' assert batch_size > 0, "batch_size must be larger than 0" if not in_dygraph_mode(): has_lod = False for f in self._feed_list: if f.lod_level != 0: has_lod = True break if has_lod: self.decorate_sample_list_generator( paddle.batch( sample_generator, batch_size=batch_size, drop_last=drop_last), places=places) else: reader = BatchedTensorProvider( feed_list=self._feed_list, place=core.CPUPlace(), batch_size=batch_size, generator=sample_generator, drop_last=drop_last) self.decorate_batch_generator(reader, places=places) else: self.decorate_sample_list_generator( paddle.batch( sample_generator, batch_size=batch_size, drop_last=drop_last), places=places) def decorate_sample_list_generator(self, reader, places=None): ''' Set the data source of the PyReader object. The provided :code:`reader` should be a Python generator, which yields list(numpy.ndarray) typed batched data. :code:`places` must be set when the PyReader object is iterable. Args: reader (generator): Python generator that yields list(numpy.ndarray)-typed batched data. places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must be provided when PyReader is iterable. Example: .. code-block:: python EPOCH_NUM = 3 ITER_NUM = 15 BATCH_SIZE = 3 def random_image_and_label_generator(height, width): def generator(): for i in range(ITER_NUM): fake_image = np.random.uniform(low=0, high=255, size=[height, width]) fake_label = np.ones([1]) yield fake_image, fake_label return generator image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int32') reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True) user_defined_generator = random_image_and_label_generator(784, 784) reader.decorate_sample_list_generator( paddle.batch(user_defined_generator, batch_size=BATCH_SIZE), fluid.core.CUDAPlace(0)) # definition of network is omitted executor = fluid.Executor(fluid.core.CUDAPlace(0)) executor.run(fluid.default_main_program()) for _ in range(EPOCH_NUM): for data in reader(): executor.run(feed=data) ''' assert self._tensor_reader is None, \ "Cannot reset the data source of PyReader" if not in_dygraph_mode(): with program_guard(Program(), Program()): feeder = DataFeeder( feed_list=self._feed_list, place=core.CPUPlace()) paddle_reader = feeder.decorate_reader( reader, multi_devices=False) def __tensor_reader_impl__(): for slots in paddle_reader(): yield [slots[var.name] for var in self._feed_list] else: provider = ListTensorProvider(reader, places) def __tensor_reader_impl__(): for slots in provider(): yield slots[0] self.decorate_batch_generator(__tensor_reader_impl__, places) def decorate_batch_generator(self, reader, places=None): ''' Set the data source of the PyReader object. The provided :code:`reader` should be a Python generator, which yields numpy.ndarray-typed or LoDTensor-typed batched data. :code:`places` must be set when the PyReader object is iterable. Args: reader (generator): Python generator that yields LoDTensor-typed batched data. places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must be provided when PyReader is iterable. Example: .. code-block:: python EPOCH_NUM = 3 ITER_NUM = 15 BATCH_SIZE = 3 def random_image_and_label_generator(height, width): def generator(): for i in range(ITER_NUM): batch_image = np.random.uniform(low=0, high=255, size=[BATCH_SIZE, height, width]) batch_label = np.ones([BATCH_SIZE, 1]) yield batch_image, batch_label return generator image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int32') reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True) user_defined_generator = random_image_and_label_generator(784, 784) reader.decorate_batch_generator(user_defined_generator, fluid.CUDAPlace(0)) # definition of network is omitted executor = fluid.Executor(fluid.CUDAPlace(0)) executor.run(fluid.default_main_program()) for _ in range(EPOCH_NUM): for data in reader(): executor.run(feed=data) ''' assert self._tensor_reader is None, \ "Cannot reset the data source of PyReader" self._tensor_reader = reader if self._iterable: assert places is not None, "Places cannot be None when py_reader is iterable" self._init_iterable(places)