/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/transform.h" #ifdef __NVCC__ #include constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024; #endif #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/for_range.h" namespace paddle { namespace operators { /* * Out = X ⊙ Y * If Y's shape does not match X' shape, they will be reshaped. * For example: * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 * pre=2, n=3*4, post=5 * x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5) * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5) * pre=2*3, n=4*5, post=1 * x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20) */ inline void get_mid_dims(const framework::DDim& x_dims, const framework::DDim& y_dims, const int axis, int& pre, int& n, int& post) { pre = 1; n = 1; post = 1; for (int i = 0; i < axis; ++i) { pre *= x_dims[i]; } for (int i = 0; i < y_dims.size(); ++i) { PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i], "Broadcast dimension mismatch."); n *= y_dims[i]; } for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) { post *= x_dims[i]; } } template class RowwiseTransformIterator; template class MidWiseTransformIterator; template class RowwiseTransformIterator { public: RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {} RowwiseTransformIterator& operator++() { ++i_; if (UNLIKELY(i_ == n_)) { i_ = 0; } return *this; } bool operator==(const RowwiseTransformIterator& rhs) const { return (ptr_ + i_) == &(*rhs); } bool operator!=(const RowwiseTransformIterator& rhs) const { return (ptr_ + i_) != &(*rhs); } const T& operator*() { return ptr_[i_]; } private: const T* ptr_; int i_; int64_t n_; }; template class MidWiseTransformIterator { public: MidWiseTransformIterator(const T* ptr, int n, int post) : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {} MidWiseTransformIterator& operator++() { ++j_; if (UNLIKELY(j_ == post_)) { ++i_; j_ = 0; if (UNLIKELY(i_ == n_)) { i_ = 0; } } return *this; } bool operator==(const MidWiseTransformIterator& rhs) const { return (ptr_ + i_) == &(*rhs); } bool operator!=(const MidWiseTransformIterator& rhs) const { return (ptr_ + i_) != &(*rhs); } const T& operator*() { return ptr_[i_]; } private: const T* ptr_; int64_t i_; int64_t j_; int64_t n_; int64_t post_; }; #ifdef __NVCC__ template class RowwiseTransformIterator : public thrust::iterator_adaptor< RowwiseTransformIterator, const T*> { public: typedef thrust::iterator_adaptor< RowwiseTransformIterator, const T*> super_t; HOSTDEVICE RowwiseTransformIterator(const T* x, int n) : super_t(x), begin_(x), n_(n){}; friend class thrust::iterator_core_access; private: unsigned int n_; const T* begin_; HOSTDEVICE typename super_t::reference dereference() const { return *(begin_ + (this->base() - begin_) % n_); } }; template class MidWiseTransformIterator : public thrust::iterator_adaptor< MidWiseTransformIterator, const T*> { public: typedef thrust::iterator_adaptor< MidWiseTransformIterator, const T*> super_t; HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post) : super_t(x), begin_(x), n_(n), post_(post){}; friend class thrust::iterator_core_access; private: unsigned int post_; unsigned int n_; const T* begin_; HOSTDEVICE typename super_t::reference dereference() const { return *(begin_ + (((this->base() - begin_) / post_) % n_)); } }; #endif template class TransformFunctor { public: TransformFunctor(const framework::Tensor* x, const framework::Tensor* y, framework::Tensor* z, const DeviceContext& ctx, Functor func) : x_(x->data()), y_(y->data()), z_(z->mutable_data(ctx.GetPlace())), nx_(x->numel()), ctx_(ctx), func_(func) {} inline void Run() const { platform::Transform trans; trans(ctx_, x_, x_ + nx_, y_, z_, func_); } inline void RunRowWise(int n, int pre) const { platform::Transform trans; trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator(y_, n), z_, func_); } inline void RunMidWise(int n, int pre, int post) const { platform::Transform trans; trans(ctx_, x_, x_ + nx_, MidWiseTransformIterator(y_, n, post), z_, func_); } private: const T* x_; const T* y_; OutType* z_; int64_t nx_; const DeviceContext& ctx_; Functor func_; }; #define EIGEN_FUNCTOR(name, eigen_op) \ struct Eigen##name##Functor { \ template \ inline void Run(const framework::Tensor* x, const framework::Tensor* y, \ framework::Tensor* z, \ const framework::ExecutionContext& ctx) { \ auto x_e = framework::EigenVector::Flatten(*x); \ auto y_e = framework::EigenVector::Flatten(*y); \ auto z_e = framework::EigenVector::Flatten(*z); \ z_e.device( \ *ctx.template device_context().eigen_device()) = \ eigen_op(x_e, y_e); \ } \ template \ inline void RunBroadCast(const framework::Tensor* x, \ const framework::Tensor* y, framework::Tensor* z, \ const framework::ExecutionContext& ctx, int pre, \ int n) { \ auto x_e = framework::EigenVector::Flatten(*x); \ auto y_e = framework::EigenVector::Flatten(*y); \ auto z_e = framework::EigenVector::Flatten(*z); \ auto y_bcast = y_e.reshape(Eigen::DSizes(1, n)) \ .broadcast(Eigen::DSizes(pre, 1)) \ .reshape(Eigen::DSizes(x_e.size())); \ z_e.device( \ *ctx.template device_context().eigen_device()) = \ eigen_op(x_e, y_bcast); \ } \ template \ inline void RunBroadCast2(const framework::Tensor* x, \ const framework::Tensor* y, \ framework::Tensor* z, \ const framework::ExecutionContext& ctx, int pre, \ int n, int post) { \ auto x_e = framework::EigenVector::Flatten(*x); \ auto y_e = framework::EigenVector::Flatten(*y); \ auto z_e = framework::EigenVector::Flatten(*z); \ auto y_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) \ .broadcast(Eigen::DSizes(pre, 1, post)) \ .reshape(Eigen::DSizes(x_e.size())); \ z_e.device( \ *ctx.template device_context().eigen_device()) = \ eigen_op(x_e, y_bcast); \ } \ } template void ElementwiseCompute(const framework::ExecutionContext& ctx) { using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* z = ctx.Output("Out"); z->mutable_data(ctx.GetPlace()); auto x_dims = x->dims(); auto y_dims = y->dims(); PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), "Rank of first input must >= rank of second input."); if (x_dims == y_dims) { functor f; f.template Run(x, y, z, ctx); return; } int axis = ctx.Attr("axis"); axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), "Axis should be in range [0, x_dims)"); int pre, n, post; get_mid_dims(x_dims, y_dims, axis, pre, n, post); if (post == 1) { functor f; f.template RunBroadCast(x, y, z, ctx, pre, n); return; } else { functor f; f.template RunBroadCast2(x, y, z, ctx, pre, n, post); return; } } #define EIGEN_ADD(x, y) ((x) + (y)) EIGEN_FUNCTOR(Add, EIGEN_ADD); #define EIGEN_SUB(x, y) ((x) - (y)) EIGEN_FUNCTOR(Sub, EIGEN_SUB); #define EIGEN_MUL(x, y) ((x) * (y)) EIGEN_FUNCTOR(Mul, EIGEN_MUL); #define EIGEN_DIV(x, y) ((x) / (y)) EIGEN_FUNCTOR(Div, EIGEN_DIV); template struct ElemwiseGradNoBroadcast { const T* x_; const T* y_; const T* out_; const T* dout_; HOSTDEVICE void operator()(size_t i) { if (dx_ != nullptr) { dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]); } if (dy_ != nullptr) { dy_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]); } } DX_OP dx_op_; DY_OP dy_op_; T* dx_; T* dy_; }; template static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out, const T* dout, int h, int w, DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { int x_offset = i * w + j; if (dx != nullptr) { dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]); } if (dy != nullptr) { T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]); if (i == 0) { dy[j] = tmp; } else { dy[j] += tmp; } } } } } #ifdef __NVCC__ template static __global__ void ElemwiseGradBroadcast1CUDAKernel( const T* x, const T* y, const T* out, const T* dout, int h, int w, DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) { extern __shared__ char shm_buffer[]; T* shm = reinterpret_cast(shm_buffer); int j = blockIdx.x; int i = threadIdx.x; int tid = threadIdx.x; shm[tid] = 0; do { int x_offset = i * w + j; if (dx) { dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]); } if (dy) { shm[tid] += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]); } i += ELEMWISE_MAX_BLOCK_DIM; } while (i < h); if (dy) { __syncthreads(); h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h; // Sum, could be optimized if (threadIdx.x == 0) { for (int k = 1; k < h; ++k) { shm[0] += shm[k]; } dy[j] = shm[0]; } } } template static void ElemwiseGradBroadcast1CUDA(cudaStream_t stream, const T* x, const T* y, const T* out, const T* dout, int h, int w, DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) { int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h); int gird_size = w; int shared_mem_size = block_size * sizeof(T); ElemwiseGradBroadcast1CUDAKernel<<>>(x, y, out, dout, h, w, dx_op, dy_op, dx, dy); } #endif template static void ElemwiseGradBroadcast2CPU(const T* x, const T* y, const T* out, const T* dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) { for (int i = 0; i < pre; ++i) { for (int j = 0; j < n; ++j) { for (int k = 0; k < post; ++k) { int x_offset = i * n * post + j * post + k; if (dx != nullptr) { dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]); } if (dy != nullptr) { T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]); if (i == 0 && k == 0) { dy[j] = tmp; } else { dy[j] += tmp; } } } } } } #ifdef __NVCC__ template static __global__ void ElemwiseGradBroadcast2CUDAKernel( const T* x, const T* y, const T* out, const T* dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) { int tid = threadIdx.x; int j = blockIdx.x; extern __shared__ char shm_buffer[]; T* shm = reinterpret_cast(shm_buffer); shm[tid] = 0; int ttid = tid; while (true) { int i = ttid / post; int k = ttid % post; if (i >= pre) break; int x_offset = i * n * post + j * post + k; if (dx != nullptr) { dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]); } if (dy != nullptr) { shm[tid] += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]); } ttid += ELEMWISE_MAX_BLOCK_DIM; } if (dy) { __syncthreads(); int h = pre * post; h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h; // Sum, could be optimized if (tid == 0) { for (int i = 1; i < h; ++i) { shm[0] += shm[i]; } dy[j] = shm[0]; } } } template static void ElemwiseGradBroadcast2CUDA(cudaStream_t stream, const T* x, const T* y, const T* out, const T* dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op, T* dx, T* dy) { int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post); int gird_size = n; int shared_mem_size = block_size * sizeof(T); ElemwiseGradBroadcast2CUDAKernel<<>>(x, y, out, dout, pre, n, post, dx_op, dy_op, dx, dy); } #endif template void ElemwiseGradCompute(const framework::ExecutionContext& ctx, const framework::Tensor& x, const framework::Tensor& y, const framework::Tensor& out, const framework::Tensor& dout, int axis, framework::Tensor* dx, framework::Tensor* dy, DX_OP dx_op, DY_OP dy_op) { if (x.dims() == y.dims()) { size_t N = static_cast(framework::product(x.dims())); platform::ForRange for_range( ctx.template device_context(), N); for_range(ElemwiseGradNoBroadcast{ x.data(), y.data(), out.data(), dout.data(), dx_op, dy_op, dx == nullptr ? nullptr : dx->mutable_data(ctx.GetPlace()), dy == nullptr ? nullptr : dy->mutable_data(ctx.GetPlace())}); } else { // Y is a scalar auto x_dim = x.dims(); auto y_dim = y.dims(); if (y_dim.size() == 1 && y_dim[0] == 1) { // y is a scalar auto extended_dims = framework::vectorize(x_dim); extended_dims.push_back(1); x_dim = framework::make_ddim(extended_dims); } axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis); int pre, n, post; get_mid_dims(x_dim, y_dim, axis, pre, n, post); if (post == 1) { int h = pre; int w = n; if (platform::is_gpu_place(ctx.GetPlace())) { #ifdef __NVCC__ ElemwiseGradBroadcast1CUDA( ctx.template device_context().stream(), x.data(), y.data(), out.data(), dout.data(), h, w, dx_op, dy_op, dx == nullptr ? nullptr : dx->mutable_data(ctx.GetPlace()), dy == nullptr ? nullptr : dy->mutable_data(ctx.GetPlace())); #endif } else { ElemwiseGradBroadcast1CPU( x.data(), y.data(), out.data(), dout.data(), h, w, dx_op, dy_op, dx == nullptr ? nullptr : dx->mutable_data(ctx.GetPlace()), dy == nullptr ? nullptr : dy->mutable_data(ctx.GetPlace())); } } else { if (platform::is_gpu_place(ctx.GetPlace())) { #ifdef __NVCC__ ElemwiseGradBroadcast2CUDA( ctx.template device_context().stream(), x.data(), y.data(), out.data(), dout.data(), pre, n, post, dx_op, dy_op, dx == nullptr ? nullptr : dx->mutable_data(ctx.GetPlace()), dy == nullptr ? nullptr : dy->mutable_data(ctx.GetPlace())); #endif } else { ElemwiseGradBroadcast2CPU( x.data(), y.data(), out.data(), dout.data(), pre, n, post, dx_op, dy_op, dx == nullptr ? nullptr : dx->mutable_data(ctx.GetPlace()), dy == nullptr ? nullptr : dy->mutable_data(ctx.GetPlace())); } } } }; template void ElementwiseGradCompute(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, const framework::Tensor* out, const framework::Tensor* dout, int axis, framework::Tensor* dx, framework::Tensor* dy) { auto& place = *ctx.template device_context().eigen_device(); auto x_dims = x->dims(); auto y_dims = y->dims(); if (dx) { dx->mutable_data(ctx.GetPlace()); } if (dy) { dy->mutable_data(ctx.GetPlace()); } if (x_dims == y_dims) { functor f; f(place, x, y, out, dx, dy, dout); return; } if (y_dims.size() == 1 && y_dims[0] == 1) { // y is a scalar auto extended_dims = framework::vectorize(x_dims); extended_dims.push_back(1); x_dims = framework::make_ddim(extended_dims); } axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); int pre, n, post; get_mid_dims(x_dims, y_dims, axis, pre, n, post); if (post == 1) { broadcastfunctor f; f(place, x, y, out, dx, dy, dout, pre, n); return; } else { broadcast2functor f; f(place, x, y, out, dx, dy, dout, pre, n, post); return; } } template void ElementwiseComputeEx(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, int axis, Functor func, framework::Tensor* z) { TransformFunctor functor( x, y, z, ctx.template device_context(), func); auto x_dims = x->dims(); auto y_dims = y->dims(); PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), "Rank of first input must >= rank of second input."); if (x_dims == y_dims) { functor.Run(); return; } if (y_dims.size() == 1 && y_dims[0] == 1) { // y is a scalar auto extended_dims = framework::vectorize(x_dims); extended_dims.push_back(1); x_dims = framework::make_ddim(extended_dims); } axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), "Axis should be in range [0, x_dims)"); int pre, n, post; get_mid_dims(x_dims, y_dims, axis, pre, n, post); if (post == 1) { functor.RunRowWise(n, pre); return; } else { functor.RunMidWise(n, pre, post); return; } } } // namespace operators } // namespace paddle