/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/pten/api/include/creation.h" #include #include "glog/logging.h" #include "paddle/pten/api/lib/kernel_dispatch.h" #include "paddle/pten/api/lib/utils/allocator.h" #include "paddle/pten/include/core.h" #include "paddle/pten/include/infershape.h" namespace paddle { namespace experimental { Tensor full(const std::vector& shape, const Scalar& value, DataType dtype, Backend backend, DataLayout layout) { // 1. Get kernel signature and kernel pten::KernelKey kernel_key{backend, layout, dtype}; auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError( "fill_constant.scalar", kernel_key); // 2. Get Device Context auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend()); auto kernel_context = pten::KernelContext(dev_ctx); // 3. Auto data transform kernel_context.EmplaceBackAttr(value); // 4. InferShape auto out_meta = pten::FullInferShape(shape, dtype, layout); // 5. Prepare outputs const auto allocator = std::make_shared( pten::TransToFluidPlace(kernel_key.backend())); auto dense_out = std::make_shared(allocator, out_meta); kernel_context.EmplaceBackOutput(dense_out); Tensor out; out.set_impl(dense_out); // 6. Call kernel kernel(&kernel_context); return out; } Tensor full_like(const Tensor& x, const Scalar& value, paddle::experimental::DataType dtype) { // 1. Get kernel signature and kernel auto kernel_key_set = ParseKernelKeyByInputArgs(x); auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey(); auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError( "fill_any_like", {kernel_key.backend(), kernel_key.layout(), dtype == DataType::UNDEFINED ? kernel_key.dtype() : dtype}); // 2. Get Device Context auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend()); auto kernel_context = pten::KernelContext(dev_ctx); // 3. Auto data transform auto dense_x = std::dynamic_pointer_cast(x.impl()); kernel_context.EmplaceBackInput(dense_x); kernel_context.EmplaceBackAttr(value); // 4. InferShape auto out_meta = UnchangedInferShape(dense_x->meta()); // 5. Prepare outputs Tensor out; // InferDataType if (dtype != pten::DataType::UNDEFINED) { const_cast(out_meta.type) = dtype; } const auto allocator = std::make_shared( pten::TransToFluidPlace(kernel_key.backend())); auto dense_out = std::make_shared(allocator, out_meta); kernel_context.EmplaceBackOutput(dense_out); out.set_impl(dense_out); // 6. Call kernel kernel(&kernel_context); return out; } Tensor ones_like(const Tensor& x, DataType dtype) { return full_like(x, 1, dtype); } Tensor zeros_like(const Tensor& x, DataType dtype) { return full_like(x, 0, dtype); } } // namespace experimental } // namespace paddle