# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unlessf required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from six.moves import reduce from ..layer_helper import LayerHelper from ..param_attr import ParamAttr from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator from ..framework import Variable from ..initializer import Constant from ..core import VarDesc from .. import core from .layer_function_generator import templatedoc from . import utils from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype import numpy import warnings __all__ = [ 'create_tensor', 'create_parameter', 'create_global_var', 'cast', 'tensor_array_to_tensor', 'concat', 'sums', 'assign', 'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax', 'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite', 'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye' ] def create_tensor(dtype, name=None, persistable=False): """ Create a variable, which will hold a Tensor with data type dtype. Args: dtype(string|numpy.dtype): the data type of Tensor to be created, the data type is bool, float16, float32, float64, int8, int16, int32 and int64. name(string, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` persistable(bool): Set the persistable flag of the create tensor. default value is False. Returns: Variable: The tensor to be created according to dtype. Examples: .. code-block:: python import paddle.fluid as fluid tensor = fluid.layers.create_tensor(dtype='float32') """ helper = LayerHelper("create_tensor", **locals()) return helper.create_variable( name=helper.name, dtype=dtype, persistable=persistable) def create_parameter(shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None): """ This function creates a parameter. The parameter is a learnable variable, which can have gradient, and can be optimized. NOTE: this is a very low-level API. This API is useful when you create operator by your self. instead of using layers. Parameters: shape (list of int): Shape of the parameter dtype (str): Data type of the parameter name (str, optional): For detailed information, please refer to :ref:`api_guide_Name` . Usually name is no need to set and None by default. attr (ParamAttr, optional): Attributes of the parameter is_bias (bool, optional): This can affect which default initializer is chosen when default_initializer is None. If is_bias, initializer.Constant(0.0) will be used. Otherwise, Xavier() will be used. default_initializer (Initializer, optional): Initializer for the parameter Returns: The created parameter. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers W = layers.create_parameter(shape=[784, 200], dtype='float32') """ helper = LayerHelper("create_parameter", **locals()) if attr is None: attr = ParamAttr(name=name) return helper.create_parameter(attr, shape, dtype, is_bias, default_initializer) def create_global_var(shape, value, dtype, persistable=False, force_cpu=False, name=None): """ This function creates a new tensor variable with value in the global block(block 0). Parameters: shape (list of int): Shape of the variable value (float): The value of the variable. The new created variable will be filled with it. dtype (str): Data type of the variable persistable (bool, optional): If this variable is persistable. Default: False force_cpu (bool, optional): Force this variable to be on CPU. Default: False name (str, optional): For detailed information, please refer to :ref:`api_guide_Name` . Usually name is no need to set and None by default. Returns: Variable: The created Variable Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32', persistable=True, force_cpu=True, name='new_var') """ helper = LayerHelper("global_var", **locals()) var = helper.create_global_variable( dtype=dtype, shape=shape, persistable=persistable, name=name, stop_gradient=True) helper.set_variable_initializer( var, initializer=Constant( value=float(value), force_cpu=force_cpu)) return var def cast(x, dtype): """ This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it to the output with :attr:`dtype`. It's meaningless if the output dtype equals the input dtype, but it's fine if you do so. Args: x(Variable): An input N-D Tensor with data type bool, float16, float32, float64, int32, int64, uint8. dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output: bool, float15, float32, float64, int8, int32, int64, uint8. Returns: Variable: A Tensor with the same shape as input's. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np place = fluid.core.CPUPlace() x_lod = fluid.data(name="x", shape=[2,2], lod_level=0) cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8") cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) x_i_lod = fluid.core.LoDTensor() x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place) x_i_lod.set_recursive_sequence_lengths([[0,2]]) res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False) res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False) print(np.array(res1[0]), np.array(res1[0]).dtype) # [[ 1 254] # [ 0 4]] uint8 print(np.array(res2[0]), np.array(res2[0]).dtype) # [[ 1 -2] # [ 0 4]] int32 """ helper = LayerHelper('cast', **locals()) check_variable_and_dtype( x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'], 'cast') out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='cast', inputs={'X': [x]}, outputs={'Out': [out]}, attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype}) return out def concat(input, axis=0, name=None): """ **Concat** This OP concatenates the input along the axis. Args: input(list): List of input Tensors with data type float32, float64, int32, int64. axis(int32|Variable, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: A Tensor with the same data type as input's. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[1,2,3], [4,5,6]]) in2 = np.array([[11,12,13], [14,15,16]]) in3 = np.array([[21,22], [23,24]]) with fluid.dygraph.guard(): x1 = fluid.dygraph.to_variable(in1) x2 = fluid.dygraph.to_variable(in2) x3 = fluid.dygraph.to_variable(in3) out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1) out2 = fluid.layers.concat(input=[x1,x2], axis=0) print(out1.numpy()) # [[ 1 2 3 11 12 13 21 22] # [ 4 5 6 14 15 16 23 24]] print(out2.numpy()) # [[ 1 2 3] # [ 4 5 6] # [11 12 13] # [14 15 16]] """ if in_dygraph_mode(): if isinstance(axis, Variable): axis = axis.numpy() assert axis.shape == ( 1, ), "axis of type Variable should have shape [1]" axis = axis[0] return core.ops.concat(input, 'axis', axis) if not isinstance(input, list): warnings.warn( "The type of input in concat should be list, but received %s." % (type(input))) input = [input] for id, x in enumerate(input): check_variable_and_dtype( x, 'input[' + str(id) + ']', ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat') check_type(axis, 'axis', (int, Variable), 'concat') helper = LayerHelper('concat', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY: assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \ "number of the elements must be 1, but received %s." % len(x) out_index = helper.create_variable_for_type_inference(dtype="int32") helper.append_op( type='tensor_array_to_tensor', inputs={'X': input[0]}, outputs={'Out': [out], 'OutIndex': [out_index]}, attrs={'axis': axis, 'use_stack': False}) else: inputs = {'X': input} attrs = {} if isinstance(axis, Variable): axis.stop_gradient = True inputs['AxisTensor'] = axis else: attrs['axis'] = axis helper.append_op( type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs) return out def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False): """ This function concatenates or stacks all tensors in the input LoDTensorArray along the axis mentioned and returns that as the output. For Example: .. code-block:: text Case 1: Given: input.data = {[[0.6, 0.1, 0.3], [0.5, 0.3, 0.2]], [[1.3], [1.8]], [[2.3, 2.1], [2.5, 2.4]]} axis = 1, use_stack = False Then: output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1], [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]] output_index.data = [3, 1, 2] Case 2: Given: input.data = {[[0.6, 0.1], [0.5, 0.3]], [[0.3, 1.3], [0.2, 1.8]], [[2.3, 2.1], [2.5, 2.4]]} axis = 1, use_stack = True Then: output.data = [[[0.6, 0.1] [0.3, 1.3] [2.3, 2.1], [[0.5, 0.3] [0.2, 1.8] [2.5, 2.4]]] output_index.data = [2, 2, 2] Args: input(Variable): A LodTensorArray variable. axis(int): The axis along which the tensors in attr::`input` will be concatenated or stacked. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. use_stack(bool): Act as concat_op or stack_op. For stack mode, all tensors in the tensor array must have the same shape. Returns: Variable: The concatenated or stacked tensor variable. Variable: A 1-D tensor variable with int32 data type. The data in this \ tensor contains all input including tensors' sizes along the axis. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32")) x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32")) i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0) array = fluid.layers.create_array(dtype='float32') fluid.layers.array_write(x0, i, array) fluid.layers.array_write(x1, i + 1, array) output, output_index = fluid.layers.tensor_array_to_tensor(input=array) """ if in_dygraph_mode(): assert isinstance( input, list), "The 'input' in tensor_array_to_tensor must be list" from .nn import stack, concat from ..dygraph import to_variable op = stack if use_stack else concat res = op(input, axis=axis) sizes = to_variable( numpy.array(list(map(lambda x: int(x.shape[axis]), input)))) return res, sizes helper = LayerHelper('tensor_array_to_tensor', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) out_index = helper.create_variable_for_type_inference(dtype="int32") helper.append_op( type='tensor_array_to_tensor', inputs={'X': input}, outputs={'Out': [out], 'OutIndex': [out_index]}, attrs={'axis': axis, 'use_stack': use_stack}) return out, out_index def sums(input, out=None): """ This function computes the sum of multiple input Tensors elementwisely. - Case 1, sum of 3 Tensors .. code-block:: text # Input Tensors x0.shape = [2, 3] x0.data = [[1., 2., 3.], [4., 5., 6.]] x1.shape = [2, 3] x1.data = [[10., 20., 30.], [40., 50., 60.]] x2.shape = [2, 3] x2.data = [[100., 200., 300.], [400., 500., 600.]] # Output Tensor out.shape = [2, 3] out.data = [[111., 222., 333.], [444., 555., 666.]] Args: input (list): A list of Variables which hold input Tensors with the same data type and shape. Optional data types are: float32, float64, int32, int64. out (Variable, optional): Output Tensor. It can be any existing Variable. The default value is None, then a new Variable will be created and returned. Returns: Variable: The sum of inputs. The shape and data type is the same with input. \ If :code:`out` is not None, the returned value is :code:`out` . Examples: .. code-block:: python import paddle.fluid as fluid x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1) x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2) x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3) x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0) # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]]) sum0 = fluid.layers.sums(input=[x0, x1, x2]) # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]]) sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3) """ helper = LayerHelper('sum', **locals()) if out is None: out = helper.create_variable_for_type_inference( dtype=helper.input_dtype()) helper.append_op( type='sum', inputs={'X': input}, outputs={'Out': out}, attrs={'use_mkldnn': False}) return out def assign(input, output=None): """ The OP copies the :attr:`input` to the :attr:`output`. Parameters: input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports float32, float64, int32 and int64. output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will be created as :attr:`output`. Default: None. Returns: Variable: A tensor with the same shape, data type and value as :attr:`input`. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] result1 = fluid.layers.create_tensor(dtype='float64') fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] result2 = fluid.layers.assign(data) # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] """ helper = LayerHelper('assign', **locals()) check_type(input, 'input', (Variable, numpy.ndarray), 'assign') if isinstance(input, Variable): check_dtype(input.dtype, 'input', ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign', '(When the type of input in assign is Variable.)') if output is None: output = helper.create_variable_for_type_inference( dtype=input.dtype) helper.append_op( type='assign', inputs={'X': [input]}, outputs={'Out': [output]}) elif isinstance(input, numpy.ndarray): dtype = convert_np_dtype_to_dtype_(input.dtype) if dtype == VarDesc.VarType.FP32: value_name = "fp32_values" values = [float(v) for v in input.flat] elif dtype == VarDesc.VarType.INT32: value_name = "int32_values" values = [int(v) for v in input.flat] elif dtype == VarDesc.VarType.INT64: value_name = "int64_values" values = [int(v) for v in input.flat] else: raise TypeError( "When the type of 'input' in assign is numpy.ndarray, " "the data type of 'input' must be float32, int32 or int64, but " "received %s." % convert_dtype(dtype)) if input.size > 1024 * 1024: raise ValueError("The size of input is too big. Please consider " "saving it to file and 'load_op' to load it") if output is None: output = helper.create_variable_for_type_inference( dtype=input.dtype) helper.append_op( type='assign_value', outputs={'Out': [output]}, attrs={ 'dtype': dtype, 'shape': list(input.shape), value_name: values }) return output def fill_constant(shape, dtype, value, force_cpu=False, out=None): """ This OP creates a Tensor with specified `shape` and `dtype`, and initializes it with a constant specified by `value`. The attribute `stop_gradient` of the created Tensor is set to True. Args: shape(list|tuple|Variable): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``shape`` is an Variable, it should be an 1-D Tensor . dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can be float16, float32, float64, int32, int64. value(float): The constant value used to initialize the Tensor to be created. force_cpu(True): data should be on CPU if it's true, default value is False. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. Returns: Variable: Tensor which is created according to shape and dtype. Raise: TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64 and the data type of out Tensor must be the same as the dtype. Examples: .. code-block:: python import paddle.fluid as fluid # attr shape is a list which doesn't contain Variable Tensor. data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]] data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1) # data1=[[5], [5]] data2=[[5], [5]] # attr shape is a list which contains Variable Tensor. positive_2 = fluid.layers.fill_constant([1], "int32", 2) data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5] # attr shape is an Variable Tensor. shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2] data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]] """ attrs = {'value': float(value), 'force_cpu': force_cpu} if convert_dtype(dtype) in ['int64', 'int32']: attrs['str_value'] = str(int(value)) else: attrs['str_value'] = str(float(value)) if in_dygraph_mode(): if isinstance(shape, (list, tuple)): shape = list( map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x, shape)) else: shape = list(shape.numpy().astype(int)) dtype = convert_np_dtype_to_dtype_(dtype) if out is None: out = _varbase_creator(dtype=dtype) core.ops.fill_constant(out, 'value', float(value), 'force_cpu', force_cpu, 'dtype', dtype, 'str_value', attrs['str_value'], 'shape', shape) out.stop_gradient = True return out helper = LayerHelper("fill_constant", **locals()) check_dtype(dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'fill_constant') check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant') inputs = {} attrs = {'value': float(value), 'force_cpu': force_cpu} if convert_dtype(dtype) in ['int64', 'int32']: attrs['str_value'] = str(int(value)) else: attrs['str_value'] = str(float(value)) def _get_attr_shape(list_shape): attr_shape = [] for idx, dim in enumerate(list_shape): if isinstance(dim, Variable): attr_shape.append(-1) else: attr_shape.append(dim) return attr_shape def _get_shape_tensor(list_shape): new_shape_tensor = [] for idx, dim in enumerate(list_shape): if isinstance(dim, Variable): dim.stop_gradient = True check_dtype( dim.dtype, 'shape[' + str(idx) + ']', ['int32', 'int64'], 'fill_constant', '(When type of shape in fill_constant is list or tuple.)') if convert_dtype(dim.dtype) == 'int64': dim = cast(x=dim, dtype='int32') new_shape_tensor.append(dim) else: temp_out = helper.create_variable_for_type_inference('int32') fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out) new_shape_tensor.append(temp_out) return new_shape_tensor if isinstance(shape, Variable): shape.stop_gradient = True check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant', '(When type of shape in fill_constant is Variable.)') if (convert_dtype(shape.dtype) == 'int64'): shape = cast(shape, 'int32') inputs["ShapeTensor"] = shape elif isinstance(shape, (list, tuple)): assert len(shape) > 0, ( "The size of 'shape' in fill_constant can't be zero, " "but received %s." % len(shape)) attrs["shape"] = _get_attr_shape(shape) if utils._contain_var(shape): inputs['ShapeTensorList'] = _get_shape_tensor(shape) if out is None: out = helper.create_variable_for_type_inference(dtype=dtype) else: check_dtype( dtype, 'create data type', convert_dtype(out.dtype), 'fill_constant', '(The create data type in fill_constant must be the same with out data type.)' ) attrs['dtype'] = out.dtype helper.append_op( type='fill_constant', inputs=inputs, outputs={'Out': [out]}, attrs=attrs, stop_gradient=True) out.stop_gradient = True return out @templatedoc() def fill_constant_batch_size_like(input, shape, dtype, value, input_dim_idx=0, output_dim_idx=0, force_cpu=False): """ This OP creates a Tesnor according the shape and dtype, and initializes the Tensor with the constants provided in ``value``. When the input is LoDTensor and the input_dim_idx is 0, the output_dim_idx dimension is set to the value of the batch_size input by the input, the Stop_gradient attribute of the created Tensor is False by default. Args: input(Variable): Tensor which data type is float32, float64, int32 and int64. shape(list): The shape of Tensor to be created, Tensor's shape may be changed according the input. dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which can be float32, float64, int32, int64. value(float|int): The constant value used to initialize the Tensor to be created. input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx dimension of the created Tensor is set to the batch_size value of input. The default value is 0. output_dim_idx(int): Used to specify which dimension of Tensor is created to be set the value of batch_size of input Tensor. The default value is 0. force_cpu(bool): data should be on CPU if it's true, default value is False. Returns: Variable: Tensor which will be created according to dtype. Examples: .. code-block:: python import paddle.fluid as fluid like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]] data = fluid.layers.fill_constant_batch_size_like( input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0] """ helper = LayerHelper("fill_constant_batch_size_like", **locals()) out = helper.create_variable_for_type_inference(dtype=dtype) attrs = { 'shape': shape, 'dtype': out.dtype, 'value': float(value), 'input_dim_idx': input_dim_idx, 'output_dim_idx': output_dim_idx, 'force_cpu': force_cpu } if convert_dtype(dtype) in ['int64', 'int32']: attrs['str_value'] = str(int(value)) else: attrs['str_value'] = str(float(value)) helper.append_op( type='fill_constant_batch_size_like', inputs={'Input': input}, outputs={'Out': [out]}, attrs=attrs) out.stop_gradient = True return out def argmin(x, axis=0): """ **argmin** This OP computes the indices of the min elements of the input tensor's element along the provided axis. Args: x(Variable): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. Returns: Variable: A Tensor with data type int64. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(in1) out1 = fluid.layers.argmin(x=x, axis=-1) out2 = fluid.layers.argmin(x=x, axis=0) out3 = fluid.layers.argmin(x=x, axis=1) out4 = fluid.layers.argmin(x=x, axis=2) print(out1.numpy()) # [[0 0 2] # [1 0 2]] print(out2.numpy()) # [[0 1 1 1] # [0 0 0 0] # [1 1 1 0]] print(out3.numpy()) # [[1 1 1 2] # [2 0 2 0]] print(out4.numpy()) # [[0 0 2] # [1 0 2]] """ helper = LayerHelper("arg_min", **locals()) out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op( type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs={'axis': axis}) out.stop_gradient = True return out def argmax(x, axis=0): """ **argmax** This OP computes the indices of the max elements of the input tensor's element along the provided axis. Args: x(Variable): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. Returns: Variable: A Tensor with data type int64. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(in1) out1 = fluid.layers.argmax(x=x, axis=-1) out2 = fluid.layers.argmax(x=x, axis=0) out3 = fluid.layers.argmax(x=x, axis=1) out4 = fluid.layers.argmax(x=x, axis=2) print(out1.numpy()) # [[2 3 1] # [0 3 1]] print(out2.numpy()) # [[0 0 0 0] # [1 1 1 1] # [0 0 0 1]] print(out3.numpy()) # [[2 2 0 1] # [0 1 1 1]] print(out4.numpy()) # [[2 3 1] # [0 3 1]] """ helper = LayerHelper("arg_max", **locals()) out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op( type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs={'axis': axis}) out.stop_gradient = True return out def argsort(input, axis=-1, descending=False, name=None): """ This OP sorts the input along the given axis, and returns sorted output data Varibale and its corresponding index Variable with the same shape as :attr:`input`. Args: input(Variable): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. descending(bool, optional) : Descending is a flag, if set to true, algorithm will sort by descending order, else sort by ascending order. Default is false. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: tuple: A tuple of sorted data Variable(with the same shape and data type as input) and the sorted indices(with the same shape as input's and with data type int64). Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]).astype(np.float32) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(in1) out1 = fluid.layers.argsort(input=x, axis=-1) out2 = fluid.layers.argsort(input=x, axis=0) out3 = fluid.layers.argsort(input=x, axis=1) print(out1[0].numpy()) # [[[5. 5. 8. 9.] # [0. 0. 1. 7.] # [2. 4. 6. 9.]] # [[2. 2. 4. 5.] # [4. 7. 7. 9.] # [0. 1. 6. 7.]]] print(out1[1].numpy()) # [[[0 3 1 2] # [0 1 2 3] # [2 3 0 1]] # [[1 3 2 0] # [0 1 2 3] # [2 0 3 1]]] print(out2[0].numpy()) # [[[5. 2. 4. 2.] # [0. 0. 1. 7.] # [1. 7. 0. 4.]] # [[5. 8. 9. 5.] # [4. 7. 7. 9.] # [6. 9. 2. 6.]]] print(out3[0].numpy()) # [[[0. 0. 1. 4.] # [5. 8. 2. 5.] # [6. 9. 9. 7.]] # [[1. 2. 0. 2.] # [4. 7. 4. 6.] # [5. 7. 7. 9.]]] """ helper = LayerHelper("argsort", **locals()) out = helper.create_variable_for_type_inference( dtype=input.dtype, stop_gradient=True) ids = helper.create_variable_for_type_inference( VarDesc.VarType.INT64, stop_gradient=True) helper.append_op( type='argsort', inputs={'X': input}, outputs={'Out': out, 'Indices': ids}, attrs={'axis': axis, 'descending': descending}) return out, ids def ones(shape, dtype, force_cpu=False): """ The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1. Its :attr:`stop_gradient` will be set to True to stop gradient computation. Parameters: shape (tuple|list): Shape of output tensor. dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports bool, float16, float32, float64, int32 and int64. force_cpu (bool, optional): Whether force to store the output tensor in CPU memory. If :attr:`force_cpu` is False, the output tensor will be stored in running device memory. Default: False. Returns: Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]] """ assert isinstance(shape, list) or isinstance( shape, tuple), "The shape's type should be list or tuple." assert reduce(lambda x, y: x * y, shape) > 0, "The shape is invalid: %s." % (str(shape)) return fill_constant(value=1.0, **locals()) def zeros(shape, dtype, force_cpu=False): """ The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0. Its :attr:`stop_gradient` will be set to True to stop gradient computation. Parameters: shape (tuple|list): Shape of output tensor. dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports bool, float16, float32, float64, int32 and int64. force_cpu (bool, optional): Whether force to store the output tensor in CPU memory. If :attr:`force_cpu` is False, the output tensor will be stored in running device memory. Default: False. Returns: Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]] """ check_dtype(dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'zeros') return fill_constant(value=0.0, **locals()) def reverse(x, axis): """ The OP reverses the tensor :attr:`x` along the given :attr:`axis`. Parameters: x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8. axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing will be apply on each axis in the tuple or list. Returns: Variable: The reversed tensor with the same shape and data type as :attr:`x`. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]] result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]] result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]] """ if isinstance(axis, int): axis = [axis] helper = LayerHelper("reverse", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='reverse', inputs={'X': x}, outputs={'Out': [out]}, attrs={'axis': axis}) return out def save(x, file_path, overwrite=True): """ Saves a variable as a file. Args: x(variable): The Tensor/LoDTensor to be saved. file_path(str): The file path where the variable will be saved. overwrite(bool): Whether or not cover the given file when it has already existed. If it's set 'False' and the file is existed, a runtime error will be thrown. """ helper = LayerHelper("save", **locals()) helper.append_op( type="save", inputs={"input": x}, outputs={}, args={"file_path": file_path, "overwrite": overwrite}) def save_combine(x, file_path, overwrite=True): """ Saves a list of variables into a single file. Args: x(list): A list of Tensor/LoDTensor variables to be saved together in a single file. file_path(str): The file path where variables will be saved. overwrite(bool): Whether or not cover the given file when it has already existed. If it's set 'False' and the file is existed, a runtime error will be thrown. Returns: There is no return value. Examples: .. code-block:: python import paddle.fluid as fluid v1 = fluid.layers.data(name="data", shape=(4, 6), dtype="float32") v2 = fluid.layers.data(name="data", shape=(6, 8, 4), dtype="float32") normed = fluid.layers.save_combine([v1, v2], file_path="output") """ helper = LayerHelper("save_combine", **locals()) helper.append_op( type="save_combine", inputs={"input": x}, outputs={}, args={"file_path": file_path, "overwrite": overwrite}) def load_combine(out, file_path): """ Loads a list of variable from a single file. Args: out(list): The list of variables to be read from the disk file. file_path(str): The path of the disk file. """ helper = LayerHelper("load_combine", **locals()) helper.append_op( type="load_combine", inputs={}, output={"Out": out}, args={"file_path": file_path}) def has_inf(x): """ Test if any of x contains an infinity number Args: x (Variable): The Tensor/LoDTensor to be checked. Returns: Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32") res = fluid.layers.has_inf(data) """ helper = LayerHelper("isinf", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out}) return out def has_nan(x): """ Test if any of x contains a NAN Args: x (Variable): The Tensor/LoDTensor to be checked. Returns: Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32") res = fluid.layers.has_nan(data) """ helper = LayerHelper("isnan", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out}) return out def isfinite(x): """ Test if any of x contains an infinity/NAN number. If all the elements are finite, returns true, else false. Args: x(variable): The Tensor/LoDTensor to be checked. Returns: Variable: The tensor variable storing the output, contains a bool value. Examples: .. code-block:: python import paddle.fluid as fluid var = fluid.layers.data(name="data", shape=(4, 6), dtype="float32") out = fluid.layers.isfinite(var) """ helper = LayerHelper("isfinite", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out}) return out def range(start, end, step, dtype): """ Return evenly spaced values within a given interval. Values are generated within the half-open interval [start, stop) (in other words, the interval including start but excluding stop). Parameters: start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value. when start is Variable, it is a 1-D Tensor with shape [1]. end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this value, except in some cases where step is not an integer and floating point round-off affects the length of out. When end is Variable, it is a 1-D Tensor with shape [1]. step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the distance between two adjacent values, out[i+1] - out[i]. dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64. Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype. Return type: Variable examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.range(0, 10, 2, 'int32') """ helper = LayerHelper("range", **locals()) check_dtype(dtype, 'create data type', ['float32', 'float64', 'int32', 'int64'], 'range') dtype = convert_dtype(dtype) if not isinstance(start, Variable): start = fill_constant([1], dtype, start) elif convert_dtype(start.dtype) != dtype: # make sure that start, end, step has the same dtype as # `dtype` start = cast(x=start, dtype=dtype) if not isinstance(end, Variable): end = fill_constant([1], dtype, end) elif convert_dtype(end.dtype) != dtype: end = cast(x=end, dtype=dtype) if not isinstance(step, Variable): step = fill_constant([1], dtype, step) elif convert_dtype(step.dtype) != dtype: step = cast(x=step, dtype=dtype) out = helper.create_variable_for_type_inference(dtype=start.dtype) helper.append_op( type='range', inputs={'Start': start, 'End': end, 'Step': step}, outputs={'Out': [out]}) out.stop_gradient = True return out def linspace(start, stop, num, dtype): """ This OP return fixed number of evenly spaced values within a given interval. Args: start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \ or a tensor of shape [1] with input data type float32, float64. stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \ or a tensor of shape [1] with input data type float32, float64. num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \ or a tensor of shape [1] with type int32. dtype(string): The data type of output tensor, it could be 'float32' and 'float64'. Returns: Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \ the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \ the value with input :attr:`start`. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0, 2.5, 5.0, 7.5, 10.0] data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0] """ helper = LayerHelper("linspace", **locals()) if not isinstance(start, Variable): start = fill_constant([1], dtype, start) if not isinstance(stop, Variable): stop = fill_constant([1], dtype, stop) if not isinstance(num, Variable): num = fill_constant([1], 'int32', num) out = helper.create_variable_for_type_inference(dtype=start.dtype) helper.append_op( type='linspace', inputs={'Start': start, 'Stop': stop, 'Num': num}, outputs={'Out': [out]}) return out def zeros_like(x, out=None): """ This OP creates a zeros tensor which has identical shape and dtype with `x`. Args: x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64. out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \ this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. The default value is :attr:`None` . Returns: Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \ the output value is False, otherwise is zero. The output shape is the same as the input. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data(name='x', dtype='float32', shape=[3]) data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0] """ helper = LayerHelper("zeros_like", **locals()) if out is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]}) out.stop_gradient = True return out def diag(diagonal): """ This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`. Args: diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \ specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64. Returns: Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \ the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims. Examples: .. code-block:: python # [[3, 0, 0] # [0, 4, 0] # [0, 0, 5] import paddle.fluid as fluid import numpy as np diagonal = np.arange(3, 6, dtype='int32') data = fluid.layers.diag(diagonal) # diagonal.shape=(3,) data.shape=(3, 3) """ helper = LayerHelper("diag", **locals()) if not isinstance(diagonal, Variable): diagonal = assign(diagonal) out = helper.create_variable_for_type_inference(dtype=diagonal.dtype) helper.append_op( type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]}) out.stop_gradient = True return out def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'): """ **eye** This function constructs an identity tensor, or a batch of tensor. Args: num_rows(int): the number of rows in each batch tensor. num_columns(int): the number of columns in each batch tensor. If None, default: num_rows. batch_shape(list(int)): If provided, the returned tensor will have a leading batch size of this shape. dtype(string): The data type of the returned tensor. It should be int32, int64, float16, float32, float64. Returns: Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns]. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.eye(3, dtype='int32') # [[1, 0, 0] # [0, 1, 0] # [0, 0, 1]] data = fluid.layers.eye(2, 3, dtype='int32') # [[1, 0, 0] # [0, 1, 0]] data = fluid.layers.eye(2, batch_shape=[3]) # Construct a batch of 3 identity tensors, each 2 x 2. # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2. """ helper = LayerHelper("eye", **locals()) if not isinstance(num_rows, int) or num_rows < 0: raise TypeError("num_rows should be a non-negative int") if num_columns is not None: if not isinstance(num_columns, int) or num_columns < 0: raise TypeError("num_columns should be a non-negative int") else: num_columns = num_rows out = helper.create_variable_for_type_inference(dtype=dtype) c_dtype = convert_np_dtype_to_dtype_(dtype) helper.append_op( type='eye', inputs={}, outputs={'Out': [out]}, attrs={ 'num_rows': num_rows, 'num_columns': num_columns, 'dtype': c_dtype }, stop_gradient=True) out.stop_gradient = True if batch_shape is not None: if not isinstance(batch_shape, list): raise TypeError("batch_shape should be a list") from .nn import stack for batch_val in reversed(batch_shape): if batch_val <= 0: raise TypeError("batch_shape should be a positive int list") else: stack_vars = [out for _ in numpy.arange(batch_val)] out = stack(stack_vars, axis=0) return out def ones_like(x, out=None): """ **ones_like** This function creates a ones tensor which has identical shape and dtype with `x`. Args: x(Variable): The input tensor which specifies shape and dtype. out(Variable): The output tensor. Returns: out(Variable): The tensor variable storing the output. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False) data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0] """ helper = LayerHelper("ones_like", **locals()) if out is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='fill_any_like', inputs={'X': [x]}, attrs={'value': 1.0}, outputs={'Out': [out]}) return out