# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import numpy as np import paddle from paddle.fluid import core, framework from paddle.fluid.dygraph.parallel import ParallelEnv from paddle.static.quantization import ( AddQuantDequantForInferencePass, AddQuantDequantPassV2, OutScaleForTrainingPass, QuantizationTransformPassV2, utils, ) from ..auto_parallel.converter import Converter from ..auto_parallel.dist_attribute import ( OperatorDistributedAttribute, TensorDistributedAttribute, ) from .pass_base import PassBase, register_pass TRANSFORM_PASS_OP_TYPES = utils._weight_supported_quantizable_op_type QUANT_DEQUANT_PASS_OP_TYPES = utils._act_supported_quantizable_op_type def _node_id(node): return (node.node.graph_id(), node.node.id()) @register_pass("auto_parallel_quantization") class QuantizationPass(PassBase): def __init__(self): super().__init__() self.set_attr("dist_context", None) self.set_attr("params_grads", None) self.set_attr("mode", "train") self.set_attr("loss", None) def _check_self(self): if self.get_attr("dist_context") is None: return False if self.get_attr("params_grads") is None: return False return True def _check_conflict(self, other_pass): return True def _apply_single_impl(self, main_program, startup_program, context): dist_context = self.get_attr("dist_context") params_grads = self.get_attr("params_grads") mode = self.get_attr("mode") loss = self.get_attr("loss") # TODO: scope and place will be removed, # cause params should be initialized by engine module. scope = paddle.static.global_scope() place = paddle.fluid.CUDAPlace(ParallelEnv().dev_id) # 0. record the relation among blocks parent_idx_dict = dict() for block in main_program.blocks: parent_idx_dict[block.idx] = block.parent_idx is_test = True if mode != "train" else False # 1. Program convert to Graph, and this pass is only for train mode main_graph = framework.IrGraph( core.Graph(main_program.desc), for_test=mode != "train" ) # 2. Prepare inputs transform_pass_ops = [] quant_dequant_ops = [] quantize_op_types = [ 'conv2d', 'depthwise_conv2d', 'mul', 'matmul', 'matmul_v2', ] for op_type in quantize_op_types: if op_type in TRANSFORM_PASS_OP_TYPES: transform_pass_ops.append(op_type) elif op_type in QUANT_DEQUANT_PASS_OP_TYPES: quant_dequant_ops.append(op_type) weight_quantize_type = ( "channel_wise_abs_max" if self.get_attr('channel_wise_abs_max') else "abs_max" ) # 3. Add quant op for ops which have parameters if len(transform_pass_ops) > 0: transform_pass = QuantizationTransformPassV2( scope=scope, place=place, weight_bits=self.get_attr('weight_bits'), activation_bits=self.get_attr('activation_bits'), skip_pattern=self.get_attr('not_quant_pattern'), activation_quantize_type="moving_average_abs_max", quantizable_op_type=transform_pass_ops, weight_quantize_type=weight_quantize_type, weight_quantize_func=None, act_quantize_func=None, weight_preprocess_func=None, act_preprocess_func=None, optimizer_func=None, executor=None, is_test=is_test, ) for sub_graph in main_graph.all_sub_graphs(): transform_pass.apply(sub_graph) # 4. Add quant op for ops which don't have parameter if len(quant_dequant_ops) > 0: quant_dequant_pass = AddQuantDequantPassV2( scope=scope, place=place, quant_bits=self.get_attr('activation_bits'), skip_pattern=self.get_attr('not_quant_pattern'), quantizable_op_type=quant_dequant_ops, is_test=is_test, ) for sub_graph in main_graph.all_sub_graphs(): quant_dequant_pass.apply(sub_graph) # 5. Gather quantitative information for the output out_scale_training_pass = OutScaleForTrainingPass( scope=scope, place=place, is_test=is_test ) for sub_graph in main_graph.all_sub_graphs(): out_scale_training_pass.apply(sub_graph) # 6. When export quant model, traverse to find the output of each op, and insert the quant/dequant op after it. if mode != "train" and self.get_attr('onnx_format'): try: out_scale_infer_pass = AddQuantDequantForInferencePass( scope=scope, place=place, quant_bits=self.get_attr('activation_bits'), ) # for sub_graph in main_graph.all_sub_graphs(): # out_scale_infer_pass.apply(sub_graph) except: logging.warning( "Unable to convert quant model with onnx_format=True, please update PaddlePaddle >= 2.4.0" ) # 7. Convert Graph back to Program quant_program = main_graph.to_program() quant_program = self.move_presist_var_to_global_block(quant_program) # 8.1 get new prams_grads from quant_program new_params_grads = [] for param, grad in params_grads: if param.name not in quant_program.global_block().vars: continue new_param = quant_program.global_block().vars[param.name] new_grad = quant_program.global_block().vars[grad.name] new_params_grads.append((new_param, new_grad)) # 8.2 get new loss var new_loss = None if loss: new_loss = quant_program.global_block().vars[loss.name] # 8.3 recover the relation among blocks for block in quant_program.blocks: block.desc._set_forward_block_idx(parent_idx_dict[block.idx]) # 9. complete distributed attribution self.set_dist_attr_for_qat_program( quant_program, main_program, dist_context ) # 10. reset scale var value with dist_attr self.reset_scope_var(quant_program, dist_context, scope, place) context.set_attr("main_program", quant_program) context.set_attr("startup_program", startup_program) context.set_attr("params_grads", new_params_grads) context.set_attr("loss", new_loss) def move_presist_var_to_global_block(self, program): global_block = program.global_block() for _op in global_block.ops: if _op.type == "while": _block_id = _op.attr("sub_block").id _block = program.block(_block_id) persistables = [] for _name, _var in _block.vars.items(): if _var.persistable: global_block._clone_variable(_var) persistables.append(_name) for _name in persistables: _block._remove_var(_name) persistables.extend(_op.input('X')) _op.desc.set_input("X", persistables) return program def reset_scope_var(self, quant_program, dist_context, scope, place): # The var_value, created by qatization_passes, should has same shape with the value after parallel. for var in quant_program.list_vars(): scope_var = scope.find_var(var.name) if not (scope_var and scope_var.get_tensor()._is_initialized()): continue tensor = scope_var.get_tensor() if var.shape == tensor.shape: continue var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var) dist_attr = { "dims_mapping": var_dist_attr.dims_mapping, "process_shape": var_dist_attr.process_mesh.shape, "process_group": var_dist_attr.process_mesh.process_ids, } # slice tensor_value with dist_attr sliced_tensor = Converter.slice_with_dist_attr( np.array(tensor), dist_attr ) tensor._clear() tensor.set(sliced_tensor, place) def set_dist_attr_for_qat_program( self, quant_program, main_program, dist_context ): # NOTE: hack implement, upgrading soon for ib, block in enumerate(quant_program.blocks): # recover origin ops' dist_attr and set quant ops' dist_attr qat_offset = 0 for ip, quant_op in enumerate(block.ops): quant_op_dist_attr = OperatorDistributedAttribute() if ( "quantize" in quant_op.type or quant_op.type == "moving_average_abs_max_scale" ): # set all quantization ops' dist_attr by quantified op input_name = quant_op.desc.input('X')[0] if "quantize" in input_name: input_name = input_name[ : input_name.index(".quantized") ] if ( quant_op.type == "moving_average_abs_max_scale" or ip - qat_offset >= len(main_program.blocks[ib].ops) ): consume_op = ( main_program.blocks[ib] ._var_recursive(input_name) .op ) else: consume_op = main_program.blocks[ib].ops[ ip - qat_offset ] consume_op_dist_attr = dist_context.get_dist_op_for_program( consume_op ).dist_attr ref_process_mesh = consume_op_dist_attr.process_mesh if input_name in consume_op_dist_attr.outputs_dist_attrs: consume_input_dist_attr = ( consume_op_dist_attr.outputs_dist_attrs[input_name] ) else: consume_input_dist_attr = ( consume_op_dist_attr.inputs_dist_attrs[input_name] ) quant_op_dist_attr.impl_idx = 0 quant_op_dist_attr.impl_type = "default" quant_op_dist_attr.process_mesh = ref_process_mesh quant_op_dist_attr.set_input_dist_attr( quant_op.desc.input('X')[0], consume_input_dist_attr ) for slot_name in quant_op.desc.input_names(): in_name = quant_op.desc.input(slot_name)[0] input_var = block._var_recursive(in_name) ref_dims_mapping = [-1] if slot_name == "X": continue elif slot_name in ['Scale', 'ZeroPoint']: if ( quant_op.has_attr('quant_axis') and quant_op.attr('quant_axis') != -1 ): x_name = quant_op.desc.input('X')[0] x_var = block._var_recursive(x_name) x_dist_attr = ( quant_op_dist_attr.get_input_dist_attr( x_name ) ) quant_axis = quant_op.attr('quant_axis') ref_dims_mapping = [ x_dist_attr.dims_mapping[quant_axis] ] tensor_dist_attr = TensorDistributedAttribute() tensor_dist_attr.process_mesh = ref_process_mesh tensor_dist_attr.dims_mapping = ref_dims_mapping dist_context.set_tensor_dist_attr_for_program( input_var, tensor_dist_attr ) quant_op_dist_attr.set_input_dist_attr( in_name, tensor_dist_attr ) for slot_name in quant_op.desc.output_names(): output_name = quant_op.desc.output(slot_name)[0] output_var = block._var_recursive(output_name) ref_dims_mapping = [-1] if slot_name == "Y": dist_context.set_tensor_dist_attr_for_program( output_var, consume_input_dist_attr ) quant_op_dist_attr.set_output_dist_attr( output_name, consume_input_dist_attr ) continue elif slot_name == "OutScale": if ( quant_op.has_attr('quant_axis') and quant_op.attr('quant_axis') != -1 ): x_name = quant_op.desc.input('X')[0] x_var = block._var_recursive(x_name) x_dist_attr = ( quant_op_dist_attr.get_input_dist_attr( x_name ) ) quant_axis = quant_op.attr('quant_axis') ref_dims_mapping = [ x_dist_attr.dims_mapping[quant_axis] ] tensor_dist_attr = TensorDistributedAttribute() tensor_dist_attr.process_mesh = ref_process_mesh tensor_dist_attr.dims_mapping = ref_dims_mapping dist_context.set_tensor_dist_attr_for_program( output_var, tensor_dist_attr ) quant_op_dist_attr.set_output_dist_attr( output_name, tensor_dist_attr ) quant_op._set_attr("op_device", "") qat_offset += 1 else: # recover origin ops' dist_attr origin_op = main_program.blocks[ib].ops[ip - qat_offset] quant_op.desc.set_original_id(origin_op.desc.original_id()) dist_origin_op = dist_context.get_dist_op_for_program( origin_op ) assert ( dist_origin_op is not None ), "origin op must have dist attr." origin_op_dist_attr = dist_origin_op.dist_attr quant_op_dist_attr.impl_idx = origin_op_dist_attr.impl_idx quant_op_dist_attr.impl_type = origin_op_dist_attr.impl_type quant_op_dist_attr.process_mesh = ( origin_op_dist_attr.process_mesh ) scale_offset = 0 for idx, input_name in enumerate(quant_op.input_arg_names): if ( origin_op.type == "while" and input_name not in origin_op.input_arg_names ): assert ( "@scale" in input_name or "@zero_point" in input_name ) scale_offset += 1 continue idx -= scale_offset origin_input_name = origin_op.input_arg_names[idx] origin_input_dist_attr = ( origin_op_dist_attr.inputs_dist_attrs[ origin_input_name ] ) quant_op_dist_attr.set_input_dist_attr( input_name, origin_input_dist_attr ) for idx, output_name in enumerate( quant_op.output_arg_names ): origin_output_name = origin_op.output_arg_names[idx] origin_output_dist_attr = ( origin_op_dist_attr.outputs_dist_attrs[ origin_output_name ] ) quant_op_dist_attr.set_output_dist_attr( output_name, origin_output_dist_attr ) if not main_program.blocks[ib]._find_var_recursive( output_name ): origin_output_var = main_program.blocks[ ib ]._var_recursive(origin_output_name) origin_out_tensor_dist_attr = ( dist_context.get_dist_tensor_for_program( origin_output_var ).dist_attr ) quant_output_var = block._var_recursive(output_name) dist_context.set_tensor_dist_attr_for_program( quant_output_var, origin_out_tensor_dist_attr ) dist_context.set_op_dist_attr_for_program( quant_op, quant_op_dist_attr ) # recover vars' dist_attr for name, dst_var in block.vars.items(): if name in main_program.blocks[ib].vars: src_var = main_program.blocks[ib].vars[name] dist_tensor = dist_context.get_dist_tensor_for_program( src_var ) if not dist_tensor: continue dist_context.set_tensor_dist_attr_for_program( dst_var, dist_tensor.dist_attr )