# Copyright PaddlePaddle contributors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.v2.activation as activation import paddle.v2.attr as attr import paddle.v2.data_type as data_type import paddle.v2.layer as layer import paddle.v2.pooling as pooling import paddle.v2.networks as networks import paddle.v2.evaluator as evaluator pixel = layer.data(name='pixel', type=data_type.dense_vector(128)) label = layer.data(name='label', type=data_type.integer_value(10)) weight = layer.data(name='weight', type=data_type.dense_vector(1)) combine_weight = layer.data( name='weight_combine', type=data_type.dense_vector(10)) score = layer.data(name='score', type=data_type.dense_vector(1)) hidden = layer.fc(input=pixel, size=100, act=activation.Sigmoid(), param_attr=attr.Param(name='hidden')) inference = layer.fc(input=hidden, size=10, act=activation.Softmax()) conv = layer.img_conv( input=pixel, filter_size=1, filter_size_y=1, num_channels=8, num_filters=16, act=activation.Linear()) class ImageLayerTest(unittest.TestCase): def test_conv_layer(self): conv_shift = layer.conv_shift(a=pixel, b=score) print layer.parse_network(conv, conv_shift) def test_pooling_layer(self): maxpool = layer.img_pool( input=conv, pool_size=2, num_channels=16, padding=1, pool_type=pooling.Max()) spp = layer.spp(input=conv, pyramid_height=2, num_channels=16, pool_type=pooling.Max()) maxout = layer.maxout(input=conv, num_channels=16, groups=4) print layer.parse_network([maxpool, spp, maxout]) def test_norm_layer(self): norm1 = layer.img_cmrnorm(input=conv, size=5) norm2 = layer.batch_norm(input=conv) norm3 = layer.sum_to_one_norm(input=conv) print layer.parse_network([norm1, norm2, norm3]) class AggregateLayerTest(unittest.TestCase): def test_aggregate_layer(self): pool = layer.pooling( input=pixel, pooling_type=pooling.Avg(), agg_level=layer.AggregateLevel.EACH_SEQUENCE) last_seq = layer.last_seq(input=pixel) first_seq = layer.first_seq(input=pixel) concat = layer.concat(input=[last_seq, first_seq]) seq_concat = layer.seq_concat(a=last_seq, b=first_seq) print layer.parse_network( [pool, last_seq, first_seq, concat, seq_concat]) class MathLayerTest(unittest.TestCase): def test_math_layer(self): addto = layer.addto(input=[pixel, pixel]) linear_comb = layer.linear_comb( weights=combine_weight, vectors=hidden, size=10) interpolation = layer.interpolation( input=[hidden, hidden], weight=score) bilinear = layer.bilinear_interp(input=conv, out_size_x=4, out_size_y=4) power = layer.power(input=pixel, weight=score) scaling = layer.scaling(input=pixel, weight=score) slope = layer.slope_intercept(input=pixel) tensor = layer.tensor(a=pixel, b=pixel, size=1000) cos_sim = layer.cos_sim(a=pixel, b=pixel) trans = layer.trans(input=tensor) print layer.parse_network([ addto, linear_comb, interpolation, power, scaling, slope, tensor, cos_sim, trans ]) class ReshapeLayerTest(unittest.TestCase): def test_reshape_layer(self): block_expand = layer.block_expand( input=conv, num_channels=4, stride_x=1, block_x=1) expand = layer.expand( input=weight, expand_as=pixel, expand_level=layer.ExpandLevel.FROM_TIMESTEP) repeat = layer.repeat(input=pixel, num_repeats=4) reshape = layer.seq_reshape(input=pixel, reshape_size=4) rotate = layer.rotate(input=pixel, height=16, width=49) print layer.parse_network( [block_expand, expand, repeat, reshape, rotate]) class RecurrentLayerTest(unittest.TestCase): def test_recurrent_layer(self): word = layer.data(name='word', type=data_type.integer_value(12)) recurrent = layer.recurrent(input=word) lstm = layer.lstmemory(input=word) gru = layer.grumemory(input=word) print layer.parse_network([recurrent, lstm, gru]) class CostLayerTest(unittest.TestCase): def test_cost_layer(self): cost1 = layer.classification_cost(input=inference, label=label) cost2 = layer.classification_cost( input=inference, label=label, weight=weight) cost3 = layer.cross_entropy_cost(input=inference, label=label) cost4 = layer.cross_entropy_with_selfnorm_cost( input=inference, label=label) cost5 = layer.mse_cost(input=inference, label=label) cost6 = layer.mse_cost(input=inference, label=label, weight=weight) cost7 = layer.multi_binary_label_cross_entropy_cost( input=inference, label=label) cost8 = layer.rank_cost(left=score, right=score, label=score) cost9 = layer.lambda_cost(input=inference, score=score) cost10 = layer.sum_cost(input=inference) cost11 = layer.huber_cost(input=score, label=label) print layer.parse_network([cost1, cost2]) print layer.parse_network([cost3, cost4]) print layer.parse_network([cost5, cost6]) print layer.parse_network([cost7, cost8, cost9, cost10, cost11]) crf = layer.crf(input=inference, label=label) crf_decoding = layer.crf_decoding(input=inference, size=3) ctc = layer.ctc(input=inference, label=label) warp_ctc = layer.warp_ctc(input=pixel, label=label) nce = layer.nce(input=inference, label=label, num_classes=3) hsigmoid = layer.hsigmoid(input=inference, label=label, num_classes=3) print layer.parse_network( [crf, crf_decoding, ctc, warp_ctc, nce, hsigmoid]) class OtherLayerTest(unittest.TestCase): def test_sampling_layer(self): maxid = layer.max_id(input=inference) sampling_id = layer.sampling_id(input=inference) eos = layer.eos(input=maxid, eos_id=5) print layer.parse_network([maxid, sampling_id, eos]) def test_slicing_joining_layer(self): pad = layer.pad(input=conv, pad_c=[2, 3], pad_h=[1, 2], pad_w=[3, 1]) print layer.parse_network(pad) class ProjOpTest(unittest.TestCase): def test_projection(self): input = layer.data(name='data', type=data_type.dense_vector(784)) word = layer.data( name='word', type=data_type.integer_value_sequence(10000)) fc0 = layer.fc(input=input, size=100, act=activation.Sigmoid()) fc1 = layer.fc(input=input, size=200, act=activation.Sigmoid()) mixed0 = layer.mixed( size=256, input=[ layer.full_matrix_projection(input=fc0), layer.full_matrix_projection(input=fc1) ]) with layer.mixed(size=200) as mixed1: mixed1 += layer.full_matrix_projection(input=fc0) mixed1 += layer.identity_projection(input=fc1) table = layer.table_projection(input=word) emb0 = layer.mixed(size=512, input=table) with layer.mixed(size=512) as emb1: emb1 += table scale = layer.scaling_projection(input=fc0) scale0 = layer.mixed(size=100, input=scale) with layer.mixed(size=100) as scale1: scale1 += scale dotmul = layer.dotmul_projection(input=fc0) dotmul0 = layer.mixed(size=100, input=dotmul) with layer.mixed(size=100) as dotmul1: dotmul1 += dotmul context = layer.context_projection(input=fc0, context_len=5) context0 = layer.mixed(size=100, input=context) with layer.mixed(size=100) as context1: context1 += context conv = layer.conv_projection( input=input, filter_size=1, num_channels=1, num_filters=128, stride=1, padding=0) conv0 = layer.mixed(input=conv, bias_attr=True) with layer.mixed(bias_attr=True) as conv1: conv1 += conv print layer.parse_network(mixed0) print layer.parse_network(mixed1) print layer.parse_network(emb0) print layer.parse_network(emb1) print layer.parse_network(scale0) print layer.parse_network(scale1) print layer.parse_network(dotmul0) print layer.parse_network(dotmul1) print layer.parse_network(conv0) print layer.parse_network(conv1) def test_operator(self): ipt0 = layer.data(name='data', type=data_type.dense_vector(784)) ipt1 = layer.data(name='word', type=data_type.dense_vector(128)) fc0 = layer.fc(input=ipt0, size=100, act=activation.Sigmoid()) fc1 = layer.fc(input=ipt0, size=100, act=activation.Sigmoid()) dotmul_op = layer.dotmul_operator(a=fc0, b=fc1) dotmul0 = layer.mixed(input=dotmul_op) with layer.mixed() as dotmul1: dotmul1 += dotmul_op conv = layer.conv_operator( img=ipt0, filter=ipt1, filter_size=1, num_channels=1, num_filters=128, stride=1, padding=0) conv0 = layer.mixed(input=conv) with layer.mixed() as conv1: conv1 += conv print layer.parse_network(dotmul0) print layer.parse_network(dotmul1) print layer.parse_network(conv0) print layer.parse_network(conv1) class NetworkTests(unittest.TestCase): def test_vgg(self): img = layer.data(name='pixel', type=data_type.dense_vector(784)) vgg_out = networks.small_vgg( input_image=img, num_channels=1, num_classes=2) print layer.parse_network(vgg_out) class EvaluatorTest(unittest.TestCase): def test_evaluator(self): img = layer.data(name='pixel', type=data_type.dense_vector(784)) output = layer.fc(input=img, size=10, act=activation.Softmax(), name='fc_here') lbl = layer.data(name='label', type=data_type.integer_value(10)) cost = layer.cross_entropy_cost(input=output, label=lbl) evaluator.classification_error(input=output, label=lbl) print layer.parse_network(cost) print layer.parse_network(output) if __name__ == '__main__': unittest.main()